Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 90(1): e0162523, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38168668

ABSTRACT

Many Acinetobacter species can grow on n-alkanes of varying lengths (≤C40). AlmA, a unique flavoprotein in these Acinetobacter strains, is the only enzyme proven to be required for the degradation of long-chain (LC) n-alkanes, including C32 and C36 alkanes. Although it is commonly presumed to be a terminal hydroxylase, its role in n-alkane degradation remains elusive. In this study, we conducted physiological, biochemical, and bioinformatics analyses of AlmA to determine its role in n-alkane degradation by Acinetobacter baylyi ADP1. Consistent with previous reports, gene deletion analysis showed that almA was vital for the degradation of LC n-alkanes (C26-C36). Additionally, enzymatic analysis revealed that AlmA catalyzed the conversion of aliphatic 2-ketones (C10-C16) to their corresponding esters, but it did not conduct n-alkane hydroxylation under the same conditions, thus suggesting that AlmA in strain ADP1 possesses Baeyer-Villiger monooxygenase (BVMO) activity. These results were further confirmed by bioinformatics analysis, which revealed that AlmA was closer to functionally identified BVMOs than to hydroxylases. Altogether, the results of our study suggest that LC n-alkane degradation by strain ADP1 possibly follows a novel subterminal oxidation pathway that is distinct from the terminal oxidation pathway followed for short-chain n-alkane degradation. Furthermore, our findings suggest that AlmA catalyzes the third reaction in the LC n-alkane degradation pathway.IMPORTANCEMany microbial studies on n-alkane degradation are focused on the genes involved in short-chain n-alkane (≤C16) degradation; however, reports on the genes involved in long-chain (LC) n-alkane (>C20) degradation are limited. Thus far, only AlmA has been reported to be involved in LC n-alkane degradation by Acinetobacter spp.; however, its role in the n-alkane degradation pathway remains elusive. In this study, we conducted a detailed characterization of AlmA in A. baylyi ADP1 and found that AlmA exhibits Baeyer-Villiger monooxygenase activity, thus indicating the presence of a novel LC n-alkane biodegradation mechanism in strain ADP1.


Subject(s)
Acinetobacter , Mixed Function Oxygenases , Mixed Function Oxygenases/metabolism , Alkanes/metabolism , Oxidation-Reduction , Acinetobacter/genetics
2.
mSphere ; 7(2): e0048221, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35296143

ABSTRACT

Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), one of the deadliest infectious diseases. The alarming health context coupled with the emergence of resistant M. tuberculosis strains highlights the urgent need to expand the range of anti-TB antibiotics. A subset of anti-TB drugs in use are prodrugs that require bioactivation by a class of M. tuberculosis enzymes called Baeyer-Villiger monooxygenases (BVMOs), which remain understudied. To examine the prevalence and the molecular function of BVMOs in mycobacteria, we applied a comprehensive bioinformatic analysis that identified six BVMOs in M. tuberculosis, including Rv3083 (MymA), Rv3854c (EthA), Rv0565c, and Rv0892, which were selected for further characterization. Homology modeling and substrate docking analysis, performed on this subset, suggested that Rv0892 is closer to the cyclohexanone BVMO, while Rv0565c and EthA are structurally and functionally similar to MymA, which is by far the most prominent type I BVMO enzyme. Thanks to an unprecedented purification and assay optimization, biochemical studies confirmed that all four BVMOs display BV-oxygenation activity. We also showed that MymA displays a distinctive substrate preference that we further investigated by kinetic parameter determination and that correlates with in silico modeling. We provide insights into distribution of BVMOs and the structural basis of their substrate profiling, and we discuss their possible redundancy in M. tuberculosis, raising questions about their versatility in prodrug activation and their role in physiology and infection. IMPORTANCE Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the leading causes of death worldwide. The rise in drug resistance highlights the urgent need for innovation in anti-TB drug development. Many anti-TB drugs require bioactivation by Baeyer-Villiger monooxygenases (BVMOs). Despite their emerging importance, BVMO structural and functional features remain enigmatic. We applied a comprehensive bioinformatic analysis and confirmed the presence of six BVMOs in M. tuberculosis, including MymA, EthA, and Rv0565c-activators of the second-line prodrug ethionamide-and the novel BVMO Rv0892. Combining in silico characterization with in vitro validation, we outlined their structural framework and substrate preference. Markedly, MymA displayed an enhanced capacity and a distinct selectivity profile toward ligands, in agreement with its catalytic site topology. These features ground the molecular basis for structure-function comprehension of the specificity in these enzymes and expand the repertoire of BVMOs with selective and/or overlapping activity for application in the context of improving anti-TB therapy.


Subject(s)
Mycobacterium tuberculosis , Prodrugs , Antitubercular Agents/pharmacology , Computational Biology , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Mycobacterium tuberculosis/genetics
3.
Front Microbiol ; 11: 1866, 2020.
Article in English | MEDLINE | ID: mdl-32849454

ABSTRACT

Biological detoxification techniques have been developed by using microorganisms such as bacteria, yeast, and fungi to eliminate mycotoxin contamination. However, due to the lack of molecular details of related enzymes, the underlying mechanism of detoxification of many mycotoxins remain unclear. On the other hand, the next generation sequencing technology provides a large number of genomic data of microorganisms that can degrade mycotoxins, which makes it possible to use bioinformatics technology to study the molecular details of relevant enzymes. In this paper, we report the whole-genome sequencing of Apiotrichum mycotoxinivorans (Trichosporon mycotoxinivorans in old taxonomy) and the putative Baeyer-Villiger monooxygenases (BVMOs) and carboxylester hydrolases for zearalenone (ZEA) degradation through bioinformatic analysis. In particular, we developed a working pipeline for genome-scaled prediction of substrate-specific enzyme (GPSE, available at https://github.com/JinyuanSun/GPSE), which ultimately builds homologous structural and molecular docking models to demonstrate how the relevant degrading enzymes work. We expect that the enzyme-prediction woroflow process GPSE developed in this study might help accelerate the discovery of new detoxification enzymes.

5.
Biochem Biophys Res Commun ; 512(3): 564-570, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30914200

ABSTRACT

Baeyer-Villiger monooxygenase (BVMO) catalyzes insertion of an oxygen atom into aliphatic or cyclic ketones with high regioselectivity. The BVMOs from Parvibaculum lavamentivorans (BVMOParvi) and Oceanicola batsensis (BVMOOcean) are interesting because of their homologies, with >40% sequence identity, and reaction with the same cyclic ketones with a methyl moiety to give different products. The revealed BVMOParvi structure shows that BVMOParvi forms a two-domain structure like other BVMOs. It has two inserted residues, compared with BVMOOcean, that form a bulge near the bound flavin adenine dinucleotide in the active site. Furthermore, this bulge is linked to a nearby α-helix via a disulfide bond, probably restricting access of the bulky methyl group of the substrate to this bulge. Another sequence motif at the entrance of the active site (Ala-Ser in BVMOParvi and Ser-Thr in BVMOOcean) allows a large volume in BVMOParvi. These minute differences may discriminate a substrate orientation in both BVMOs from the initial substrate binding pocket to the final oxygenation site, resulting in the inserted oxygen atom being in different positions of the same substrate.


Subject(s)
Alphaproteobacteria/metabolism , Bacterial Proteins/metabolism , Ketones/metabolism , Mixed Function Oxygenases/metabolism , Alphaproteobacteria/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , Cyclization , Ketones/chemistry , Mixed Function Oxygenases/chemistry , Models, Molecular , NADP/metabolism , Oxygen/metabolism , Protein Conformation , Substrate Specificity
6.
Enzyme Microb Technol ; 119: 45-51, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30243386

ABSTRACT

Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from recinoleic acid was achieved by whole-cell biotransformation by Escherichia coli, utilizing crude glycerol as the sole carbon source. Whole-cell biotransformation resulted in ∼93% conversion of the substrate ricinoleic acid to (Z)-11-(heptanoyloxy)undec-9-enoic acid. We replaced the inducer-dependent promoter system (T7 and Rhm promotors) with a constitutive promoter system. This resulted in successful expression of ADH, FadL, and E6-BVMO, without costly inducer addition. Efficacy evaluation of the whole-cell biotransformation by inducer-free system by five different E. coli strains revealed that the highest product titer was accumulated in E. coli BW25113 strain. The engineered inducer-free system using crude glycerol as the sole carbon source showed competitive performance with induction systems. Optimized conditions resulted in the accumulation of 7.38 ± 0.42 mM (Z)-11-(heptanoyloxy)undec-9-enoic acid, and when 10 mM substrate was used as feed concentration, the product titer reached 2.35 g/L. The inducer-free construct with constitutive promoter system that this study established, which utilizes the waste by-product crude glycerol, will pave the way for the economic synthesis of many industrially important chemicals, like (Z)-11-(heptanoyloxy)undec-9-enoic acid.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Carbon/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Glycerol/chemistry , Ricinoleic Acids/metabolism , Undecylenic Acids/metabolism , Biotransformation , Escherichia coli/growth & development , Genetic Engineering
7.
J Chem Technol Biotechnol ; 93(8): 2131-2140, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30069077

ABSTRACT

BACKGROUND: It is widely accepted that the poor thermostability of Baeyer-Villiger monooxygenases limits their use as biocatalysts for applied biocatalysis in industrial applications. The goal of this study was to investigate the biocatalytic oxidation of 3,3,5-trimethylcyclohexanone using a thermostable cyclohexanone monooxygenase from Thermocrispum municipale (TmCHMO) for the synthesis of branched ϵ-caprolactone derivatives as building blocks for tuned polymeric backbones. In this multi-enzymatic reaction, the thermostable cyclohexanone monooxygenase was fused to a phosphite dehydrogenase (PTDH) in order to ensure co-factor regeneration. RESULTS: Using reaction engineering, the reaction rate and product formation of the regio-isomeric branched lactones were improved and the use of co-solvents and the initial substrate load were investigated. Substrate inhibition and poor product solubility were overcome using continuous substrate feeding regimes, as well as a biphasic reaction system with toluene as water-immiscible organic solvent. A maximum volumetric productivity, or space-time-yield, of 1.20 g L-1 h-1 was achieved with continuous feeding of substrate using methanol as co-solvent, while a maximum product concentration of 11.6 g L-1 was achieved with toluene acting as a second phase and substrate reservoir. CONCLUSION: These improvements in key process metrics therefore demonstrate progress towards the up-scaled Baeyer-Villiger monooxygenase-biocatalyzed synthesis of the target building blocks for polymer application. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

8.
Biochim Biophys Acta ; 1864(9): 1177-1187, 2016 09.
Article in English | MEDLINE | ID: mdl-27344049

ABSTRACT

BACKGROUND: Ar-BVMO is a recently discovered Baeyer-Villiger monooxygenase from the genome of Acinetobacter radioresistens S13 closely related to medically relevant ethionamide monooxygenase EtaA (prodrug activator) and capable of inactivating the imipenem antibiotic. METHODS: The co-substrate preference as well as steady-state and rapid kinetics studies of the recombinant purified protein were carried out using stopped-flow spectroscopy under anaerobic and aerobic conditions. Kd values were measured by isothermal calorimetry. Enzymatic activity was determined by measuring the amount of product formed using high pressure liquid chromatography or gas chromatography. Site-directed mutagenesis experiments were performed to decipher the role of the active site arginine-292. RESULTS: Ar-BVMO was found to oxidize ethionamide as well as linear ketones. Mechanistic studies on the wild type enzyme using stopped-flow spectroscopy allowed for the detection of the characteristic oxygenating C4a-(hydro)peroxyflavin intermediate, which decayed rapidly in the presence of the substrate. Replacement of arginine 292 in Ar-BVMO by glycine or alanine resulted in greatly reduced or no Baeyer-Villiger activity, respectively, demonstrating the crucial role of this residue in catalysis of ketone substrates. However, both the R292A and R292G mutants are capable of carrying out N- and S-oxidation reactions. CONCLUSIONS: Substrate profiling of Ar-BVMO confirms its close relationship to EtaA; ethionamide is one of its substrates. The active site Arginine 292 is required for its Baeyer-Villiger activity but not for heteroatom oxidation. GENERAL SIGNIFICANCE: A single mutation converts Ar-BVMO to a unique S- or N-monooxygenase, a useful biocatalyst for the production of oxidized metabolites of human drug metabolizing enzymes.


Subject(s)
Acinetobacter/enzymology , Bacterial Proteins/chemistry , Ethionamide/chemistry , Flavins/chemistry , Ketones/chemistry , Mixed Function Oxygenases/chemistry , Soil Microbiology , Acinetobacter/genetics , Alanine/chemistry , Alanine/metabolism , Amino Acid Sequence , Arginine/chemistry , Arginine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Ethionamide/metabolism , Flavins/metabolism , Gene Expression , Glycine/chemistry , Glycine/metabolism , Ketones/metabolism , Kinetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
9.
Biochimie ; 107 Pt B: 270-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25230086

ABSTRACT

This work reports a detailed kinetic study of the recently discovered BVMOAf1 from Aspergillus fumigatus Af293. By performing steady state and pre-steady state kinetic analyses, it was demonstrated that the rate of catalysis is partially limited by the NADPH-mediated reduction of the flavin cofactor, a unique hallmark of BVMOAf1. In addition, the oxygenating C4a-(hydro)peroxyflavin intermediate could be spectrophotometrically detected and it was found to be the most stable among all analyzed BVMOs. To assess the possible influence of some residues on the kinetic features, model-inspired site-directed mutagenesis was performed. Among the mutants, the Q436A variant showed a slightly broader substrate scope and a better catalytic efficiency. In summary, this study describes for the first time the kinetic parameters for an eukaryotic BVMO.


Subject(s)
Aspergillus fumigatus/enzymology , Fungal Proteins/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Binding Sites , Catalysis , Flavins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Kinetics , Mixed Function Oxygenases/genetics , Models, Molecular , Mutagenesis, Site-Directed , NADP/chemistry , NADP/metabolism , Oxidation-Reduction , Protein Conformation , Protein Structure, Tertiary
10.
FEBS Open Bio ; 4: 168-74, 2014.
Article in English | MEDLINE | ID: mdl-24649397

ABSTRACT

Enzyme stability is an important parameter in biocatalytic applications, and there is a strong need for efficient methods to generate robust enzymes. We investigated whether stabilizing disulfide bonds can be computationally designed based on a model structure. In our approach, unlike in previous disulfide engineering studies, short bonds spanning only a few residues were included. We used cyclohexanone monooxygenase (CHMO), a Baeyer-Villiger monooxygenase (BVMO) from Acinetobacter sp. NCIMB9871 as the target enzyme. This enzyme has been the prototype BVMO for many biocatalytic studies even though it is notoriously labile. After creating a small library of mutant enzymes with introduced cysteine pairs and subsequent screening for improved thermostability, three stabilizing disulfide bonds were identified. The introduced disulfide bonds are all within 12 Å of each other, suggesting this particular region is critical for unfolding. This study shows that stabilizing disulfide bonds do not have to span many residues, as the most stabilizing disulfide bond, L323C-A325C, spans only one residue while it stabilizes the enzyme, as shown by a 6 °C increase in its apparent melting temperature.

11.
Enzyme Microb Technol ; 53(4): 283-7, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23931695

ABSTRACT

In order to establish a new route for ɛ-caprolactone production from the corresponding cyclohexanol with an internal cofactor recycling for NADPH, a recently redesigned thermostable polyol dehydrogenase (PDH) and the cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus were combined. First, the expression of PDH could be improved 4.9-fold using E. coli C41 with co-expression of chaperones. Both enzymes were also successfully co-immobilized on glutaraldehyde-activated support (Relizyme™ HA403). Cyclohexanol could be converted to ɛ-caprolactone (ɛ-CL) with 83% conversion using the free enzymes and with 34% conversion using the co-immobilized catalysts. Additionally, a preparative scale biotransformation of ɛ-caprolactone starting from cyclohexanol was performed using the soluble enzymes. The ɛ-CL could be isolated by simple extraction and evaporation with a yield of 55% and a purity of >99%.


Subject(s)
Caproates/metabolism , Cyclohexanols/metabolism , Lactones/metabolism , Acinetobacter calcoaceticus/enzymology , Acinetobacter calcoaceticus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Biotechnology , Biotransformation , Enzymes, Immobilized/genetics , Enzymes, Immobilized/metabolism , Kinetics , L-Iditol 2-Dehydrogenase/genetics , L-Iditol 2-Dehydrogenase/metabolism , NADP/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
12.
Enzyme Microb Technol ; 53(4): 288-92, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23931696

ABSTRACT

The development of a biocatalytic process concept for ɛ-caprolactone, which directly converts cyclohexanol as an easily available industrial raw material into the desired ɛ-caprolactone in a one-pot fashion while only requiring air as sole reagent, is reported. The desired product ɛ-caprolactone was obtained with 94-97% conversion when operating at a substrate concentration in the range of 20-60 mM. At higher substrate concentrations, however, a significant drop of conversion was found. Subsequent detailed studies on the impact of the starting material, intermediate and product components revealed a significant inhibition and partial deactivation of the BVMO by the product ɛ-caprolactone (in particular at higher concentrations) as well as an inhibition of the BVMO by cyclohexanol and cyclohexanone.


Subject(s)
Caproates/metabolism , Cyclohexanols/metabolism , Lactones/metabolism , Acinetobacter calcoaceticus/enzymology , Bacterial Proteins/metabolism , Biocatalysis , Bioreactors , Biotechnology , Biotransformation , Enzyme Stability , Oxygen/metabolism , Oxygenases/antagonists & inhibitors , Oxygenases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...