Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Cells ; 13(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38334665

ABSTRACT

HIRIP3 is a mammalian protein homologous to the yeast H2A.Z deposition chaperone Chz1. However, the structural basis underlying Chz's binding preference for H2A.Z over H2A, as well as the mechanism through which Chz1 modulates histone deposition or replacement, remains enigmatic. In this study, we aimed to characterize the function of HIRIP3 and to identify its interacting partners in HeLa cells. Our findings reveal that HIRIP3 is specifically associated in vivo with H2A-H2B dimers and CK2 kinase. While bacterially expressed HIRIP3 exhibited a similar binding affinity towards H2A and H2A.Z, the associated CK2 kinase showed a notable preference for H2A phosphorylation at serine 1. The recombinant HIRIP3 physically interacted with the H2A αC helix through an extended CHZ domain and played a crucial role in depositing the canonical core histones onto naked DNA. Our results demonstrate that mammalian HIRIP3 acts as an H2A histone chaperone, assisting in its selective phosphorylation by Ck2 kinase at serine 1 and facilitating its deposition onto chromatin.


Subject(s)
Histone Chaperones , Histones , Animals , Humans , HeLa Cells , Histone Chaperones/genetics , Histones/metabolism , Mammals/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae/metabolism , Serine , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
2.
FEBS Lett ; 596(1): 112-127, 2022 01.
Article in English | MEDLINE | ID: mdl-34820838

ABSTRACT

Zinc ribbons, one of the largest fold groups among zinc fingers, often include proteins involved in the transcription machinery. Here, we identify and characterize one such zinc ribbon-bearing protein in the apicomplexan parasite Toxoplasma gondii, annotated as putative transcription elongation factor 1 (ELF1), with predicted functions in transcription and chromatin maintenance. We show that this ELF1 homolog, referred to as T. gondii ELF1-like divergent (TgELD), is expressed in both tachyzoite and bradyzoite developmental stages. TgELD associates with the cytoskeleton in the tachyzoites, while it transiently becomes a part of the cyst wall in the early bradyzoites, followed by a cytosolic and peripheral localization in late bradyzoites. TgELD is phosphorylated by a casein kinase 2-like protein, which has potential implications for its localization and function in the parasite.


Subject(s)
Toxoplasma
3.
J Virol ; 95(16): e0083621, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34076483

ABSTRACT

Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last 2 decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that (i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication, (ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD, (iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD, (iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD, and HVD phosphorylation is mediated by CK2 kinase, and (v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication. IMPORTANCE Cellular proteins play critical roles in the assembly of alphavirus replication complexes (vRCs). Their recruitment is determined by the viral nonstructural protein 3 (nsP3). This protein contains a long, disordered hypervariable domain (HVD), which encodes virus-specific combinations of short linear motifs interacting with host factors during vRC assembly. Our study defined the binding mechanism of NAP1 family members to CHIKV HVD and demonstrated a stimulatory effect of this interaction on viral replication. We show that interaction with NAP1L1 is mediated by two HVD motifs and requires phosphorylation of HVD by CK2 kinase. Based on the accumulated data, we present a map of the binding motifs of the critical host factors currently known to interact with CHIKV HVD. It can be used to manipulate cell specificity of viral replication and pathogenesis, and to develop a new generation of vaccine candidates.


Subject(s)
Chikungunya virus/physiology , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Nucleosome Assembly Protein 1/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Binding Sites , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Host-Pathogen Interactions , Mice , Mutation , NIH 3T3 Cells , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virus Replication
4.
IUBMB Life ; 72(6): 1250-1261, 2020 06.
Article in English | MEDLINE | ID: mdl-32364671

ABSTRACT

A series of halogenated derivatives of natural flavonoids: baicalein and chrysin were designed and investigated as possible ligands for the catalytic subunit of tumor-associated human kinase CK2. Thermal shift assay method, in silico modeling, and high-performance liquid chromatography-derived hydrophobicity together with IC50 values determined in biochemical assay were used to explain the ligand affinity to the catalytic subunit of human protein kinase CK2. Obtained results revealed that substitution of baicalein and chrysin with halogen atom increases their binding affinity to hCK2α, and for 8-chlorochrysin the observed effect is even stronger than for the reference CK2 inhibitor-4,5,6,7-tetrabromo-1H-benzotriazole. The cytotoxic activities of the baicalein and chrysin derivatives in the in vitro model have been evaluated for MV4-11 (human biphenotypic B myelomonocytic leukemia), A549 (human lung adenocarcinoma), LoVo (human colon cancer), and MCF-7 (human breast cancer) as well as on the nontumorigenic human breast epithelial MCF-10A cell lines. Among the baicalein derivatives, the strongest cytotoxic effect was observed for 8-bromobaicalein, which exhibited the highest activity against breast cancer cell line MCF-7 (IC50 10 ± 3 µM). In the chrysin series, the strongest cytotoxic effect was observed for unsubstituted chrysin, which exhibited the highest activity against leukemic cell line MV4-11 (IC50 10 ± 4 µM).


Subject(s)
Casein Kinase II/antagonists & inhibitors , Flavanones/chemistry , Flavonoids/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Casein Kinase II/chemistry , Casein Kinase II/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Flavanones/metabolism , Flavanones/pharmacology , Flavonoids/metabolism , Flavonoids/pharmacology , Halogenation , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship
5.
Int J Mol Sci ; 20(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779225

ABSTRACT

Protein kinase CK2 (CK2) is a highly conserved and ubiquitous kinase is involved in crucial biological processes, including proliferation, migration, and differentiation. CK2 holoenzyme is a tetramer composed by two catalytically active (α/α') and two regulatory (ß) subunits and exerts its function on a broad range of targets. In the brain, it regulates different steps of neurodevelopment, such as neural differentiation, neuritogenesis, and synaptic plasticity. Interestingly, CK2 mutations have been recently linked to neurodevelopmental disorders; however, the functional requirements of the individual CK2 subunits in neurodevelopment have not been yet investigated. Here, we disclose the role of CK2 on the migration and adhesion properties of GN11 cells, an established model of mouse immortalized neurons, by different in vitro experimental approaches. Specifically, the cellular requirement of this kinase has been assessed pharmacologically and genetically by exploiting CK2 inhibitors and by generating subunit-specific CK2 knockout GN11 cells (with a CRISPR/Cas9-based approach). We show that CK2α' subunit has a primary role in increasing cell adhesion and reducing migration properties of GN11 cells by activating the Akt-GSK3ß axis, whereas CK2α subunit is dispensable. Further, the knockout of the CK2ß regulatory subunits counteracts cell migration, inducing dramatic alterations in the cytoskeleton not observed in CK2α' knockout cells. Collectively taken, our data support the view that the individual subunits of CK2 play different roles in cell migration and adhesion properties of GN11 cells, supporting independent roles of the different subunits in these processes.


Subject(s)
Casein Kinase II/genetics , Neurons/cytology , Animals , Casein Kinase II/metabolism , Cell Adhesion , Cell Line , Cell Movement , Gene Knockdown Techniques , Glycogen Synthase Kinase 3 beta/metabolism , Mice , Mutation , Neurons/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
6.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 5): 288-293, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717996

ABSTRACT

The catalytic subunits of protein kinase CK2 are classified into two subtypes: CK2α1 and CK2α2. CK2α1 is an attractive drug-discovery target for various diseases such as cancers and nephritis. CK2α2 is defined as an off-target of CK2α1 and is a potential target in the development of male contraceptive drugs. High-resolution crystal structures of both isozymes are likely to provide crucial clues for the design of selective inhibitors of CK2α1 and/or CK2α2. To date, several crystal structures of CK2α1 have been solved at high resolutions of beyond 1.5 Å. However, crystal structures of CK2α2 have barely achieved a low resolution of around 3 Šbecause of the formation of needle-shaped crystals. In this study, new crystal forms were exploited and one provided a crystal structure of CK2α2 at 1.89 Šresolution. This result, together with the structure of CK2α1, will assist in the development of highly selective inhibitors for both isozymes.


Subject(s)
Casein Kinase II/chemistry , Casein Kinase II/metabolism , Crystallization/methods , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Protein Structure, Secondary , Tromethamine/metabolism
7.
ACS Med Chem Lett ; 7(3): 300-5, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985319

ABSTRACT

The Wnt pathway is an evolutionarily conserved and tightly regulated signaling network with important roles in embryonic development and adult tissue regeneration. Impaired Wnt pathway regulation, arising from mutations in Wnt signaling components, such as Axin, APC, and ß-catenin, results in uncontrolled cell growth and triggers oncogenesis. To explore the reported link between CK2 kinase activity and Wnt pathway signaling, we sought to identify a potent, selective inhibitor of CK2 suitable for proof of concept studies in vivo. Starting from a pyrazolo[1,5-a]pyrimidine lead (2), we identified compound 7h, a potent CK2 inhibitor with picomolar affinity that is highly selectivity against other kinase family enzymes and inhibits Wnt pathway signaling (IC50 = 50 nM) in DLD-1 cells. In addition, compound 7h has physicochemical properties that are suitable for formulation as an intravenous solution, has demonstrated good pharmacokinetics in preclinical species, and exhibits a high level of activity as a monotherapy in HCT-116 and SW-620 xenografts.

8.
J Synchrotron Radiat ; 20(Pt 6): 974-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121351

ABSTRACT

The Ser/Thr kinase CK2 consists of two catalytic subunits (CK2α) and a dimer of the regulatory subunits (CK2ß), and is a ubiquitous enzyme that regulates growth, proliferation and the survival of cells. CK2 is a remarkable drug target for potentially treating a wide variety of tumours and glomerulonephritis. The purified CK2α protein was crystallized using ethylene glycol as a precipitant. The crystal structure of CK2α with 21 loci of alternative conformations, including a niacin, 19 ethylene glycols and 346 waters, was determined at 1.06 Å resolution to an Rwork of 14.0% (Rfree = 16.5%). The alternative ensemble in the internal hydrophobic core underpins the plasticity of the αD-helix responsible for the regulation of ATP/GTP binding. The clear density map indicates that a niacin molecule, contained in the Escherichia coli culture medium, binds to the ATP binding site. An ethylene glycol molecule binds in the hydrophobic pocket lateral to the αD-helix forming the rim of the active site. The other ethylene glycol molecules occupy physiologically significant sites, including the CK2ß binding interface and substrate binding site, as well as the gap in the crystal packing. Together with water molecules in the active site, these structural insights should facilitate drug discovery.


Subject(s)
Adenosine Triphosphate/metabolism , Casein Kinase II/chemistry , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/chemistry , Ethylene Glycol/chemistry , Guanosine Triphosphate/metabolism , Humans , Models, Molecular , Protein Conformation
9.
ACS Med Chem Lett ; 4(8): 800-5, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-24900749

ABSTRACT

In this letter, we describe the design, synthesis, and structure-activity relationship of 5-anilinopyrazolo[1,5-a]pyrimidine inhibitors of CK2 kinase. Property-based optimization of early leads using the 7-oxetan-3-yl amino group led to a series of matched molecular pairs with lower lipophilicity, decreased affinity for human plasma proteins, and reduced binding to the hERG ion channel. Agents in this study were shown to modulate pAKT(S129), a direct substrate of CK2, in vitro and in vivo, and exhibited tumor growth inhibition when administered orally in a murine DLD-1 xenograft.

SELECTION OF CITATIONS
SEARCH DETAIL