Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 103(14): 5641-5652, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115636

ABSTRACT

Fungal pretreatment on lignocellulosic biomass has the advantages of being eco-friendly, having low operating cost, and producing no inhibitor. In this study, six white-rot fungi (Trametes versicolor, Pleurotus ostreatus, Phanerochaete chrysosporium, Coriolopsis gallica, Pleurotus sajor-caju, Lentinula edodes) were applied to corn stover pretreatment. Biomass degradation, production of enzymes, reducing sugar via hydrolysis, and ethanol yield via yeast fermentation were quantified during 30 days cultivation, and samples were taken every 5 days. Among six fungi, the highest lignin degradation was 38.29% at 30 days for P. sajor-caju pretreatment, the highest sugar yield was 71.24%, and the highest ethanol yield was 0.124 g g-1 corn stover under P. sajor-caju pretreatment for 25 days. The highest activities of laccase and manganese peroxidase were 29.22 and 10.22 U g-1 dry biomass, respectively, under T. versicolor pretreatment at 25 days. The highest levels of enzyme, sugar, and ethanol production are comparable or higher than what has been reported in previous literature. P. sajor-caju is one of the most widely worldwide cultivated mushrooms. The findings in this study show the potential to incorporate P. sajor-caju mushroom cultivation into corn stover pretreatment to enhance the production of a suite of products such as enzymes, sugars, and ethanol.


Subject(s)
Biomass , Enzymes/biosynthesis , Ethanol/metabolism , Fungi/metabolism , Zea mays/microbiology , Cellulose/metabolism , Fermentation , Hydrolysis , Laccase/metabolism , Lignin/metabolism , Peroxidases/metabolism , Pleurotus/metabolism
2.
Bioresour Technol ; 263: 232-241, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29747100

ABSTRACT

Five metal oxides, Fe2O3, CuO, NiO, ZnO, and MgO, were investigated as catalysts to improve lignin removal and reduce sugar degradation during corn stover pretreatment. Liquid hot water (LHW) pretreatment was used as control. Among the five metal oxides, MgO was the most suitable for biomass pretreatmen. The optimal pretreatment condition was the solid/liquid ratio of 1/10 with 0.10 mol/L MgO at 190 °C for 40 min. The fermentable xylose (85%) and glucose (97%) from MgO pretreatment were equivalent to those (89 and 95%) from LHW pretreatment, and lignin removal was 1.5-fold more than that from LHW pretreatment. The pH of the resulting biomass slurry was close to 7.0 and without furfural and 5-hydroxymethylfurfural formation. Thus, the water-washing step for inhibitor removal can be omitted. The biomass liquor can be used directly for downstream hydrolysis and fermentation. Acid-resistant equipment is not required due to the absence of acids.


Subject(s)
Lignin/isolation & purification , Zea mays , Biomass , Fermentation , Ferric Compounds , Hydrolysis , Metals , Oxides , Sugars , Water
3.
Bioresour Technol ; 161: 230-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24709536

ABSTRACT

A screw extrude steam explosion (SESE) apparatus was designed and introduced to pretreat corn stover continuously for its following enzymatic hydrolysis. SESE parameters temperature (100, 120, 150°C) and residence time (1, 2, 3min) were investigated. The enzymatic hydrolysis of corn stover pretreated by SESE and steam explosion (SE) process was carried out and analyzed systematically. A serial of analysis methods were established, and the corn stover before/after the pretreatment were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD) and Thermal Gravity/Derivative Thermal Gravity Analysis (TG/DTG). After treated by SESE pretreatment at the optimum condition (150°C, 2min), the pretreated corn stover exhibited highest enzymatic hydrolysis yield (89%), and rare fermentation inhibitors formed. Characterization results indicated that the highest yield could be attributed to the effective removal of lignin/hemicellulose and destruction of cellulose structure by SESE pretreatment.


Subject(s)
Zea mays/chemistry , Biofuels , Hot Temperature , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL