Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Biol Pharm Bull ; 47(10): 1610-1615, 2024.
Article in English | MEDLINE | ID: mdl-39358240

ABSTRACT

The systemic RNA interference defective 1 (SID-1) family proteins are putative double-stranded RNA (dsRNA) transporters. Two mammalian homologs, SIDT1 and SIDT2 have been linked to many functions such as innate immune responses, microRNA uptake and lysosomal degradation of RNA/DNA whereas Caenorhabditis elegans SID-1 is essential for systemic RNA interference. However, dsRNA uptake mechanism is largely unknown. In this review, we discuss our current understanding of the molecular functions of SID-1 family proteins at a structure level, which highlights recent structural studies.


Subject(s)
Caenorhabditis elegans Proteins , RNA, Double-Stranded , Animals , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Humans , Caenorhabditis elegans/metabolism , RNA Transport , Membrane Proteins
2.
bioRxiv ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39282384

ABSTRACT

Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet® followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 µM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

3.
bioRxiv ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37503206

ABSTRACT

DNA recognition is critical for assembly of double-stranded DNA viruses, in particular for the initiation of packaging the viral genome into the capsid. DNA packaging has been extensively studied for three archetypal bacteriophage systems: cos, pac and phi29. We identified the minimal site within the cos region of bacteriophage HK97 specifically recognised by the small terminase and determined a cryoEM structure for the small terminase:DNA complex. This nonameric circular protein utilizes a previously unknown mechanism of DNA binding. While DNA threads through the central tunnel, unexpectedly, DNA-recognition is generated at its exit by a substructure formed by the N- and C-terminal segments of two adjacent protomers of the terminase which are unstructured in the absence of DNA. Such interaction ensures continuous engagement of the small terminase with DNA, allowing sliding along DNA while simultaneously checking the DNA sequence. This mechanism allows locating and instigating packaging initiation and termination precisely at the cos site.

4.
Chemistry ; 29(29): e202300262, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36867738

ABSTRACT

Cruentaren A is a natural product that exhibits potent antiproliferative activity against various cancer cell lines, yet its binding site within ATP synthase remained unknown, thus limiting the development of improved analogues as anticancer agents. Herein, we report the cryogenic electron microscopy (cryoEM) structure of cruentaren A bound to ATP synthase, which allowed the design of new inhibitors through semisynthetic modification. Examples of cruentaren A derivatives include a trans-alkene isomer, which was found to exhibit similar activity to cruentaren A against three cancer cell lines as well as several other analogues that retained potent inhibitory activity. Together, these studies provide a foundation for the generation of cruentaren A derivatives as potential therapeutics for the treatment of cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Molecular Structure , Cryoelectron Microscopy , Cell Line , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Adenosine Triphosphate , Structure-Activity Relationship
5.
J Mol Biol ; 434(19): 167789, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35964676

ABSTRACT

Regulation of pancreatic KATP channels involves orchestrated interactions of their subunits, Kir6.2 and SUR1, and ligands. Previously we reported KATP channel cryo-EM structures in the presence and absence of pharmacological inhibitors and ATP, focusing on the mechanisms by which inhibitors act as pharmacological chaperones of KATP channels (Martin et al., 2019). Here we analyzed the same cryo-EM datasets with a focus on channel conformational dynamics to elucidate structural correlates pertinent to ligand interactions and channel gating. We found pharmacological inhibitors and ATP enrich a channel conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane domain, while depleting one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm. This conformational change remodels a network of intra- and inter-subunit interactions as well as the ATP and PIP2 binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2 and SUR1's ABC module involving residues implicated in channel function and showed a SUR1 residue, K134, participates in PIP2 binding. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and R54, that mediate both ATP and PIP2 binding, suggesting a mechanism for competitive gating by ATP and PIP2.


Subject(s)
KATP Channels , Adenosine Triphosphate/metabolism , Humans , KATP Channels/chemistry , Ligands , Pancreas , Protein Conformation
6.
Angew Chem Int Ed Engl ; 61(26): e202200269, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35385593

ABSTRACT

The µ-opioid receptor (µOR) is the major target for opioid analgesics. Activation of µOR initiates signaling through G protein pathways as well as through ß-arrestin recruitment. µOR agonists that are biased towards G protein signaling pathways demonstrate diminished side effects. PZM21, discovered by computational docking, is a G protein biased µOR agonist. Here we report the cryoEM structure of PZM21 bound µOR in complex with Gi protein. Structure-based evolution led to multiple PZM21 analogs with more pronounced Gi protein bias and increased lipophilicity to improve CNS penetration. Among them, FH210 shows extremely low potency and efficacy for arrestin recruitment. We further determined the cryoEM structure of FH210 bound to µOR in complex with Gi protein and confirmed its expected binding pose. The structural and pharmacological studies reveal a potential mechanism to reduce ß-arrestin recruitment by the µOR, and hold promise for developing next-generation analgesics with fewer adverse effects.


Subject(s)
GTP-Binding Proteins , Receptors, Opioid, mu , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , GTP-Binding Proteins/metabolism , Receptors, Opioid, mu/metabolism , Signal Transduction , beta-Arrestins/metabolism , beta-Arrestins/pharmacology
7.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33944777

ABSTRACT

SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine (NSDP) as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.


Subject(s)
Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , Drug Evaluation, Preclinical/methods , Fluorescent Dyes , Neuroprotection/drug effects , Animals , Armadillo Domain Proteins/antagonists & inhibitors , Armadillo Domain Proteins/genetics , Cryoelectron Microscopy , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/genetics , Dihydropyridines/therapeutic use , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Neurons/physiology , Pharmaceutical Preparations
8.
Cell Rep ; 31(4): 107584, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32348755

ABSTRACT

Human antibody SIgN-3C neutralizes dengue virus (DENV) and Zika virus (ZIKV) differently. DENV:SIgN-3C Fab and ZIKV:SIgN-3C Fab cryoelectron microscopy (cryo-EM) complex structures show Fabs crosslink E protein dimers at extracellular pH 8.0 condition and also when further incubated at acidic endosomal conditions (pH 8.0-6.5). We observe Fab binding to DENV (pH 8.0-5.0) prevents virus fusion, and the number of bound Fabs increase (from 120 to 180). For ZIKV, although there are already 180 copies of Fab at pH 8.0, virus structural changes at pH 5.0 are not inhibited. The immunoglobulin G (IgG):DENV structure at pH 8.0 shows both Fab arms bind to epitopes around the 2-fold vertex. On ZIKV, an additional Fab around the 5-fold vertex at pH 8.0 suggests one IgG arm would engage with an epitope, although the other may bind to other viruses, causing aggregation. For DENV2 at pH 5.0, a similar scenario would occur, suggesting DENV2:IgG complex would aggregate in the endosome. Hence, a single antibody employs different neutralization mechanisms against different flaviviruses.


Subject(s)
Flavivirus/pathogenicity , Neutralization Tests/methods , Humans
9.
Cell Rep ; 30(11): 3699-3709.e6, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32126208

ABSTRACT

Many chaperones promote nascent polypeptide folding followed by substrate release through ATP-dependent conformational changes. Here we show cryoEM structures of Gα subunit folding intermediates in complex with full-length Ric-8A, a unique chaperone-client system in which substrate release is facilitated by guanine nucleotide binding to the client G protein. The structures of Ric-8A-Gαi and Ric-8A-Gαq complexes reveal that the chaperone employs its extended C-terminal region to cradle the Ras-like domain of Gα, positioning the Ras core in contact with the Ric-8A core while engaging its switch2 nucleotide binding region. The C-terminal α5 helix of Gα is held away from the Ras-like domain through Ric-8A core domain interactions, which critically depend on recognition of the Gα C terminus by the chaperone. The structures, complemented with biochemical and cellular chaperoning data, support a folding quality control mechanism that ensures proper formation of the C-terminal α5 helix before allowing GTP-gated release of Gα from Ric-8A.


Subject(s)
GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Amino Acid Sequence , GTP-Binding Protein alpha Subunits/ultrastructure , Guanine Nucleotide Exchange Factors/ultrastructure , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Models, Biological , Models, Molecular , Molecular Chaperones/ultrastructure , Phosphorylation , Protein Binding , Protein Folding , Protein Stability , Protein Structure, Secondary , Quality Control
10.
J Virol ; 93(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31189702

ABSTRACT

There is limited information about the molecular triggers leading to the uncoating of enteroviruses under physiological conditions. Using real-time spectroscopy and sucrose gradients with radioactively labeled virus, we show at 37°C, the formation of albumin-triggered, metastable uncoating intermediate of echovirus 1 without receptor engagement. This conversion was blocked by saturating the albumin with fatty acids. High potassium but low sodium and calcium concentrations, mimicking the endosomal environment, also induced the formation of a metastable uncoating intermediate of echovirus 1. Together, these factors boosted the formation of the uncoating intermediate, and the infectivity of this intermediate was retained, as judged by end-point titration. Cryo-electron microscopy reconstruction of the virions treated with albumin and high potassium, low sodium, and low calcium concentrations resulted in a 3.6-Å resolution model revealing a fenestrated capsid showing 4% expansion and loss of the pocket factor, similarly to altered (A) particles described for other enteroviruses. The dimer interface between VP2 molecules was opened, the VP1 N termini disordered and most likely externalized. The RNA was clearly visible, anchored to the capsid. The results presented here suggest that extracellular albumin, partially saturated with fatty acids, likely leads to the formation of the infectious uncoating intermediate prior to the engagement with the cellular receptor. In addition, changes in mono- and divalent cations, likely occurring in endosomes, promote capsid opening and genome release.IMPORTANCE There is limited information about the uncoating of enteroviruses under physiological conditions. Here, we focused on physiologically relevant factors that likely contribute to opening of echovirus 1 and other B-group enteroviruses. By combining biochemical and structural data, we show that, before entering cells, extracellular albumin is capable of priming the virus into a metastable yet infectious intermediate state. The ionic changes that are suggested to occur in endosomes can further contribute to uncoating and promote genome release, once the viral particle is endocytosed. Importantly, we provide a detailed high-resolution structure of a virion after treatment with albumin and a preset ion composition, showing pocket factor release, capsid expansion, and fenestration and the clearly visible genome still anchored to the capsid. This study provides valuable information about the physiological factors that contribute to the opening of B group enteroviruses.


Subject(s)
Albumins/pharmacology , Endosomes/virology , Enterovirus B, Human/drug effects , Fatty Acids/metabolism , Animals , Capsid Proteins/chemistry , Cell Line , Chlorocebus aethiops , Cryoelectron Microscopy , Enterovirus B, Human/chemistry , Hot Temperature , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL