Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
Cureus ; 16(9): e69009, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39385877

ABSTRACT

Limb-girdle muscular dystrophy (LGMD) presents a unique challenge for anesthesiologists because of the potential complications related to surgery and anesthesia. This is a case of a 55-year-old male with colon cancer and a history of LGMD, who underwent a low anterior resection colectomy under general anesthesia. Because of the pathogenic variants in the RYR1 gene implicated in various congenital myopathies, we review clinical concerns associated with LGMD and describe the anesthetic management of our patient with LGMD and a potentially difficult airway.

2.
J Cell Biochem ; : e30662, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39348239

ABSTRACT

Defect in membrane repair contributes to the development of muscular dystrophies such as limb girdle muscular dystrophy (LGMD) type R2 or R12. Nevertheless, many other muscular dystrophies may also result from a defect in this process. Identifying these pathologies requires the development of specific methods to inflict sarcolemma damage on a large number of cells and rapidly analyze their response. We adapted a protocol hitherto used to study the behavior of cancer cells to mechanical constraint. This method is based on forcing the passage of cells through a thin needle, which induces shear stress. Due to size considerations, this method requires working with mononuclear muscle cells instead of myotubes or muscle fibers. Although functional sarcolemma repair was thought to be restricted to myotubes and muscle fibers, we show here that 24h-differentiated myoblasts express a complete machinery capable of addressing membrane damage. At this stage, muscle cells do not yet form myotubes, revealing that the membrane repair machinery is set up early throughout the differentiation process. When submitted to the shear-stress assay, these cells were observed to repair membrane damage in a Ca2+-dependent manner, as previously reported. We show that this technique is able to identify the absence of membrane resealing in muscle cells from patient suffering from LGMDR2. The proposed technique provides therefore a suitable method for identifying cellular dysregulations in membrane repair of dystrophic human muscle cells.

3.
Neuromuscul Disord ; 43: 20-28, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39178649

ABSTRACT

Dysferlin-deficient limb girdle muscular dystrophy (LGMD R2), also referred to as dysferlinopathy, can be associated with respiratory muscle weakness as the disease progresses. Clinical practice guidelines recommend biennial lung function assessments in patients with dysferlinopathy to screen for respiratory impairment. However, lack of universal access to spirometry equipment and trained specialists makes regular monitoring challenging. This study investigated the use of the Performance of Upper Limb (PUL) clinical scale entry item as a low-cost screening tool to identify patients with dysferlinopathy at risk of respiratory impairment. Using data from 193 patients from the Jain Foundation's International Clinical Outcomes Study, modelling identified a significant positive relationship between the PUL entry item and forced vital capacity (FVC). Eighty-eight percent of patients with the lowest PUL entry item score of 1 presented with FVC % predicted values of <60 %, suggestive of respiratory impairment. By contrast, only 10 % of the remainder of the cohort (PUL entry item of 2 or more) had an FVC of <60 %. This relationship also held true when accounting for ambulatory status, age, and sex as possible confounding factors. In summary, our results suggest that the PUL entry item could be implemented in clinical practice to screen for respiratory impairment where spirometry is not readily available.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Upper Extremity , Humans , Muscular Dystrophies, Limb-Girdle/physiopathology , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Male , Vital Capacity , Female , Adult , Middle Aged , Upper Extremity/physiopathology , Young Adult , Spirometry , Dysferlin/genetics , Respiratory Function Tests , Aged , Adolescent
4.
Int J Mol Sci ; 25(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39201459

ABSTRACT

Caveolin is a structural protein within caveolae that may be involved in transmembrane molecular transport and/or various intercellular interactions within cells. Specific mutations of caveolin-3 in muscle fibers are well known to cause limb-girdle muscular dystrophy. Altered expression of caveolin-3 has also been detected in Duchenne muscular dystrophy, which may be a part of the pathological process leading to muscle weakness. Interestingly, it has been shown that the renovation of nitric oxide synthase (NOS) in sarcolemma with muscular dystrophy could improve muscle health, suggesting that NOS may be involved in the pathology of muscular dystrophy. Here, we summarize the notable function of caveolin and/or NOS in skeletal muscle fibers and discuss their involvement in the pathology as well as possible tactics for the innovative treatment of muscular dystrophies.


Subject(s)
Caveolin 3 , Muscular Dystrophies , Nitric Oxide Synthase , Animals , Humans , Caveolae/metabolism , Caveolin 3/metabolism , Caveolin 3/genetics , Caveolins/metabolism , Muscular Dystrophies/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Mutation , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase/genetics
5.
Skelet Muscle ; 14(1): 19, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123261

ABSTRACT

BACKGROUND: Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are characterised by muscle wasting (primarily in the limb and limb-gridle muscles), inflammation, and replacement of myofibres with adipose tissue. The precise pathomechanism for dysferlinopathy is currently unclear; as such there are no treatments currently available. Glucocorticoids (GCs) are widely used to reduce inflammation and treat muscular dystrophies, but when administered to patients with dysferlinopathy, they have unexpected adverse effects, with accelerated loss of muscle strength. METHODS: To investigate the mechanistic basis for the adverse effects of GCs in dysferlinopathy, the potent GC dexamethasone (Dex) was administered for 4-5 weeks (0.5-0.75 µg/mL in drinking water) to dysferlin-deficient BLA/J and normal wild-type (WT) male mice, sampled at 5 (Study 1) or 10 months (Study 2) of age. A wide range of analyses were conducted. Metabolism- and immune-related gene expression was assessed in psoas muscles at both ages and in quadriceps at 10 months of age. For the 10-month-old mice, quadriceps and psoas muscle histology was assessed. Additionally, we investigated the impact of Dex on the predominantly slow and fast-twitch soleus and extensor digitorum longus (EDL) muscles (respectively) in terms of contractile function, myofibre-type composition, and levels of proteins related to contractile function and metabolism, plus glycogen. RESULTS: At both ages, many complement-related genes were highly expressed in BLA/J muscles, and WT mice were generally more responsive to Dex than BLA/J. The effects of Dex on BLA/J mice included (i) increased expression of inflammasome-related genes in muscles (at 5 months) and (ii) exacerbated histopathology of quadriceps and psoas muscles at 10 months. A novel observation was pronounced staining for glycogen in many myofibres of the damaged quadriceps muscles, with large pale vacuolated myofibres, suggesting possible myofibre death by oncosis. CONCLUSION: These pilot studies provide a new focus for further investigation into the adverse effects of GCs on dysferlinopathic muscles.


Subject(s)
Dexamethasone , Dysferlin , Glucocorticoids , Muscle, Skeletal , Muscular Dystrophies, Limb-Girdle , Animals , Dysferlin/genetics , Dysferlin/metabolism , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Male , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Glucocorticoids/adverse effects , Pilot Projects , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Disease Models, Animal , Muscle Strength/drug effects
6.
Front Genet ; 15: 1410727, 2024.
Article in English | MEDLINE | ID: mdl-39188286

ABSTRACT

Limb-girdle muscular dystrophy type 2A (LGMD R1 Calpain 3-Related, LGMD2A/R1), an autosomal recessive disorder, is characterized by progressive muscle weakness with a prominent presentation in the proximal limb girdle muscles. LGMD2A/R1, which is caused by variants in calcium-activated neutral proteinase 3 (CAPN3), is the most common. The present study aimed at identifying the clinically significant variants in a Chinese family with LGMD2A/R1 and exploring the genotype-phenotype correlations. Clinical symptoms, laboratory findings, and physical examinations were obtained. Genomic DNA was extracted from the peripheral blood samples of this family. Whole-exome sequencing (WES) and Sanger sequencing were used to explore and validate the pathogenic genes. In this study, the proband and his sister, who had two identical mutations in the CAPN3 gene sequence, exhibited diverse clinical features, including disease onset and progression. The mutation c.2120 A>G (p. D707G) is pathogenic and has been reported in the Human Gene Mutation Database (HGMD) and the ClinVar database. c.1783-72 C>G may be a novel pathogenic mutation of LGMD2A/R1 based on the American College of Medical Genetics (ACMG) guidelines, which widens the gene variant pool in CAPN3 and improves diagnosis and genetic counseling.

7.
Neuromuscul Disord ; 42: 36-42, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39121631

ABSTRACT

Limb-girdle muscular dystrophy recessive 27 is associated with biallelic variants in JAG2, encoding the JAG2 notch ligand. Twenty-four affected individuals from multiple families have been described in two reports. We present two Australian families with three novel JAG2 missense variants: (c.1021G>T, p.(Gly341Cys)) homozygous in two siblings of Pakistani origin, and compound heterozygous variants (c.703T>C, p.(Trp235Arg); c.2350C>T, p.(Arg784Cys)) in a proband of European ancestry. Patients presented with childhood-onset limb-girdle-like myopathy with difficulty or inability walking. MRI revealed widespread torso and limb muscle involvement. Muscle pathology showed myopathic changes with fatty infiltration. Muscle RNA sequencing revealed significant downregulation of myogenesis genes PAX7, MYF5, and MEGF10 similar to previous JAG2-related muscular dystrophy cases or Jag2-knockdown cells. In absence of functional assays to characterise JAG2 variants, clinical, MRI and transcriptomic profiling collectively may help discern JAG2-related muscular dystrophy, diagnosis of which is essential for patients and families given the severity of disease and reoccurrence risk.


Subject(s)
Jagged-2 Protein , Muscular Dystrophies, Limb-Girdle , Mutation, Missense , Pedigree , Child , Female , Humans , Male , Australia , Jagged-2 Protein/genetics , Magnetic Resonance Imaging , Muscle, Skeletal/pathology , Muscle, Skeletal/diagnostic imaging , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Child, Preschool
8.
Mol Biol Rep ; 51(1): 853, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060875

ABSTRACT

BACKGROUND: Inherited neuromuscular (NMD) and neurodegenerative diseases (NDD) belong to two distinct categories that disturb different components of the nervous system, leading to a variety of different symptoms and clinical manifestations. Both NMD and NDD are a heterogeneous group of genetic conditions. Genetic variations in the SGCA and SIL1 genes have been implicated in causing Limb Girdle Muscular Dystrophy (LGMD), a type of neuromuscular disorder, and Marinesco-Sjögren Syndrome (MSS) which is a neurodegenerative disorder. METHODS: In the present study, we have investigated four patients presenting LGMD and five patients with MSS features. After collecting detailed clinical and family history, necessary laboratory investigations, including estimation of a skeletal muscle marker enzyme serum creatine kinase (CK), nerve conduction study (NCS), electromyography (EMG), echocardiography (Echo), Magnetic resonance imaging (MRI -brain), CT-brain and X-rays were performed. Whole exome followed by Sanger sequencing was employed to search for the disease-causing variants. RESULTS: Physical examination in LGMD patients revealed poor muscle tone and facing difficulty in straightening up from the floor. Clinical history revealed frequent falls and strenuousness in climbing stairs. They started toe-walking in early childhood. Laboratory investigations confirmed elevated CK levels and abnormal NCS and EMG. The MSS patients showed abnormalities in gate and jerking movement, abnormal speech, and strabismus with cataract. MRI-brain showed cerebral atrophy in some MSS patients with elevated CK levels. Whole exome sequencing revealed a nonsense variant [c.C574T, p.(Arg192*)] in the SGCA gene and a frameshift [c.936dupG, p.(Leu313AlaFs*39)] in the SIL1 gene in LGMD and MSS patients, respectively. CONCLUSION: Our study emphasizes the significance of integrating clinical and genetic analyses for precise diagnosis and tailored management strategies in inherited NMD and NDD disorders. To the best of our knowledge, this is the first study documenting SGCA and SIL1 recurrent variants in subcontinent populations with few rare clinical features. The recurrent mutations expanding the global understanding of the mutation's geographic and ethnic distribution and contributing valuable epidemiological data. The study will facilitate genetic counseling for families experiencing similar clinical features, both within Pakistani populations and in other regions.


Subject(s)
Exome Sequencing , Muscular Dystrophies, Limb-Girdle , Humans , Muscular Dystrophies, Limb-Girdle/genetics , Male , Female , Adult , Exome Sequencing/methods , Muscle Proteins/genetics , Pedigree , Mutation/genetics , Spinocerebellar Degenerations/genetics , Child , Adolescent , Rho Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/genetics , Young Adult , Exome/genetics , Sarcoglycans
9.
Transl Pediatr ; 13(6): 1001-1006, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984033

ABSTRACT

Background: Laminin-α2 (LAMA2) chain-deficient muscular dystrophy (LAMA2-MD) is the most common congenital muscular dystrophy (CMD) in the world. Its main manifestations are muscle weakness and hypotonia that occur after birth or at early infancy. Case Description: We reported a case of a 3-year-old and 6-month-old boy presented with delayed motor development, elevated creatine kinase (CK) levels, and abnormal white matter in the brain. Whole exome sequencing (WES) showed compound heterozygous variants of the LAMA2 gene. This case reports for the first time the compound heterozygous LAMA2 variants c.5476C>T (p.R1826*) (paternal inheritance) with c.2749 + 2dup (maternal inheritance), as both variants are interpreted as pathogenic/potentially pathogenic variants. Conclusions: This study reports a novel heterozygous variant, including two pathogenic variants in the LAMA2 gene, and highlights the effectiveness of highly efficient exome sequencing applying in patients with undefined CMDs.

10.
medRxiv ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38947030

ABSTRACT

Background: Weekly Steroids in Muscular Dystrophy (WSiMD) was a pilot study to evaluate once weekly prednisone in patients with Limb Girdle and Becker muscular dystrophy (LGMD and BMD, respectively). At study endpoint, there were trends towards increased lean mass, reduced fat mass, reduced creatine kinase and improved motor function. The investigation was motivated by studies in mouse muscular dystrophy models in which once weekly glucocorticoid exposure enhanced muscle strength and reduced fibrosis. Methods: WSiMD participants provided blood samples for aptamer serum profiling at baseline and after 6 months of weekly steroids. A subset completed magnetic resonance (MR) evaluation of muscle at study onset and endpoint. Results/Conclusions: At baseline compared to age and sex-matched healthy controls, the aggregate serum protein profile in the WSiMD cohort was dominated by muscle proteins, reflecting leak of muscle proteins into serum. Disease status produced more proteins differentially present in serum compared to steroid-treatment effect. Nonetheless, a response to prednisone was discernable in the WSiMD cohort, even at this low dose. Glucocorticoids downregulated muscle proteins and upregulated certain immune process- and matrix-associated proteins. Muscle MR fat fraction showed trends with functional status. The prednisone-responsive markers could be used in larger trial of prednisone efficacy.

11.
Clin Genet ; 106(5): 644-649, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39015008

ABSTRACT

Limb-girdle muscular dystrophy type 2G/R7 (LGMD2G/R7) is an ultra-rare condition initially identified within the Brazilian population. We aimed to expand clinical and genetic information about this disease, including its worldwide distribution. A multicenter historical cohort study was performed at 13 centers in Brazil in which data from index cases and their affected relatives from consecutive families with LGMD2G/R7 were reviewed from July 2017 to August 2023. Additionally, a systematic literature review was conducted to identify case reports and series of the disease worldwide. Forty-one LGMD2G/R7 cases were described in the Brazilian cohort, being all subjects homozygous for the c.157C>T/(p.Gln53*) variant in TCAP. Survival curves showed that the median disease duration before individuals required walking aids was 21 years. Notably, women exhibited a slower disease progression, requiring walking aids 13 years later than men. LGMD2G/R7 was frequently reported not only in Brazil but also in China and Bulgaria, with 119 cases identified globally, with possible founder effects in the Brazilian, Eastern European, and Asian populations. These findings are pivotal in raising awareness of LGMD2G/R7, understanding its progression, and identifying potential modifiers. This can significantly contribute to the development of future natural history studies and clinical trials for this disease.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Mutation , Humans , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/epidemiology , Muscular Dystrophies, Limb-Girdle/diagnosis , Male , Brazil/epidemiology , Female , Adult , Adolescent , Middle Aged , Child , Cohort Studies , Young Adult , Pedigree , Connectin/genetics , Phenotype , Genetic Predisposition to Disease , Child, Preschool
12.
FASEB J ; 38(14): e23825, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031532

ABSTRACT

Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.


Subject(s)
Calcium , Calpain , Mice, Knockout , Muscle Proteins , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Calpain/metabolism , Mice , Calcium/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Male , Mice, Inbred C57BL , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Calcium Signaling
13.
Hum Hered ; 89(1): 52-59, 2024.
Article in English | MEDLINE | ID: mdl-38830343

ABSTRACT

INTRODUCTION: Recessive mutations in the CAPN3 gene can lead to limb-girdle muscular dystrophy recessive 1 (LGMD R1). Targeted next-generation sequencing facilitates the discovery of new mutations linked with disease, owing to its ability to selectively enrich specific genomic regions. METHODS: We performed targeted next-generation sequencing of all exons of the CAPN3 gene in 4 patients with sporadic limb-girdle muscular dystrophy (LGMD) and further analyzed the effects of the novel identified variant using various software tools. RESULTS: We found 5 variants in CAPN3 gene in 4 patients, c.82_83insC (insertion mutation) and c.1115+2T>C (splicing mutation) are reported for the first time in CAPN3 (NM_000070.2). The bioinformatics analysis indicated that these two novel variants affected CAPN3 transcription as well as translation. DISCUSSION: Our findings reveal previously unreported splicing mutation and insertion mutation in CAPN3 gene, further expanding the pathogenic gene profile of LGMD.


Subject(s)
Calpain , Muscle Proteins , Muscular Dystrophies, Limb-Girdle , Adolescent , Adult , Female , Humans , Male , Young Adult , Calpain/genetics , China , East Asian People/genetics , Exons/genetics , High-Throughput Nucleotide Sequencing , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation
14.
Adv Sci (Weinh) ; 11(31): e2400188, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38887849

ABSTRACT

Dysferlin is a multi-functional protein that regulates membrane resealing, calcium homeostasis, and lipid metabolism in skeletal muscle. Genetic loss of dysferlin results in limb girdle muscular dystrophy 2B/2R (LGMD2B/2R) and other dysferlinopathies - rare untreatable muscle diseases that lead to permanent loss of ambulation in humans. The mild disease severity in dysferlin-deficient mice and diverse genotype-phenotype relationships in LGMD2B patients have prompted the development of new in vitro models for personalized studies of dysferlinopathy. Here the first 3-D tissue-engineered hiPSC-derived skeletal muscle ("myobundle") model of LGMD2B is described that exhibits compromised contractile function, calcium-handling, and membrane repair, and transcriptomic changes indicative of impaired oxidative metabolism and mitochondrial dysfunction. In response to the fatty acid (FA) challenge, LGMD2B myobundles display mitochondrial deficits and intracellular lipid droplet (LD) accumulation. Treatment with the ryanodine receptor (RyR) inhibitor dantrolene or the dissociative glucocorticoid vamorolone restores LGMD2B contractility, improves membrane repair, and reduces LD accumulation. Lastly, it is demonstrated that chemically induced chronic RyR leak in healthy myobundles phenocopies LGMD2B contractile and metabolic deficit, but not the loss of membrane repair capacity. Together, these results implicate intramyocellular Ca2+ leak as a critical driver of dysferlinopathic phenotype and validate the myobundle system as a platform to study LGMD2B pathogenesis.


Subject(s)
Calcium , Muscle, Skeletal , Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Humans , Calcium/metabolism , Muscle, Skeletal/metabolism , Muscle Contraction/genetics , Dysferlin/genetics , Dysferlin/metabolism , Animals
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732148

ABSTRACT

Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.


Subject(s)
Lamin Type A , Microtubule-Associated Proteins , Muscle Proteins , Muscle, Skeletal , Adult , Female , Humans , Male , Middle Aged , Lamin Type A/genetics , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Pedigree , Microtubule-Associated Proteins/genetics
17.
Neuromuscul Disord ; 39: 48-53, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795602

ABSTRACT

Limb girdle muscular dystrophy (LGMD) is a debilitating disease and the fourth most common muscular dystrophy. This study describes the development of the LGMD-Health Index (LGMD-HI). Participants were aged >18 years and recruited from three LGMD registries and GRASP-LGMD consortium. The initial instrument, comprised of 16 thematic subscales and 161 items, underwent expert review resulting in item removal as well as confirmatory factor analysis followed by inter-rater reliability and internal consistency of the subscales. Following expert review, one subscale and 59 items were eliminated. Inter-rater reliability was assessed and five items were removed due to Cohen's kappa <0.5. The final subscales had high internal consistencies with an average Cronbach alpha of 0.92. Test re-test reliability of the final instrument was high (intraclass correlation coefficient=0.97). Known groups validity testing showed a statistically significant difference in LGMD-HI scores amongst subjects based on ambulation status (28.7 vs 50.0, p < 0.0001), but not sex, employment status, or genetic subtype. The final instrument is comprised of 15 subscales and 97 items. The LGMD-HI is a disease-specific, patient-reported outcome measure designed in compliance with published FDA guidelines. This instrument is capable of measuring burden of disease with no significant variation based on LGMD subtype.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Humans , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Male , Female , Adult , Middle Aged , Reproducibility of Results , Aged , Severity of Illness Index , Young Adult , Registries
18.
NMR Biomed ; 37(10): e5172, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38794994

ABSTRACT

Limb-girdle muscular dystrophy (LGMD) type R1 (LGMDR1) is the most common subtype of LGMD in Europe. Prospective longitudinal data, including clinical assessments and new biomarkers such as quantitative magnetic resonance imaging (qMRI), are needed to evaluate the natural course of the disease and therapeutic options. We evaluated eight thigh and seven leg muscles of 13 LGMDR1 patients (seven females, mean age 36.7 years, body mass index 23.9 kg/m2) and 13 healthy age- and gender-matched controls in a prospective longitudinal design over 1 year. Clinical assessment included testing for muscle strength with quick motor function measure (QMFM), gait analysis and patient questionnaires (neuromuscular symptom score, activity limitation [ACTIVLIM]). MRI scans were performed on a 3-T MRI scanner, including a Dixon-based sequence, T2 mapping and diffusion tensor imaging. The qMRI values of fat fraction (FF), water T2 relaxation time (T2), fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were analysed. Within the clinical outcome measures, significant deterioration between baseline and follow-up was found for ACTIVLIM (p = 0.029), QMFM (p = 0.012). Analysis of qMRI parameters of the patient group revealed differences between time points for both FF and T2 when analysing all muscles (FF: p < 0.001; T2: p = 0.016). The highest increase of fat replacement was found in muscles with an FF of between 10% and 50% at baseline. T2 in muscles with low-fat replacement increased significantly. No significant differences were found for the diffusion metrics. Significant correlations between qMRI metrics and clinical assessments were found at baseline and follow-up, while only T2 changes in thigh muscles correlated with changes in ACTIVLIM over time (ρ = -0.621, p < 0.05). Clinical assessments can show deterioration of the general condition of LGMDR1 patients. qMRI measures can give additional information about underlying pathophysiology. Further research is needed to establish qMRI outcome measures for clinical trials.


Subject(s)
Magnetic Resonance Imaging , Muscle, Skeletal , Muscular Dystrophies, Limb-Girdle , Humans , Female , Male , Adult , Longitudinal Studies , Muscular Dystrophies, Limb-Girdle/diagnostic imaging , Prospective Studies , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Middle Aged , Young Adult
19.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38765987

ABSTRACT

Introduction: Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. Methods: The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. Results: The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as Definitive, 4 (11%) as Moderate and 1 (3%) as Limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. Conclusions: The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.

20.
Matrix Biol ; 129: 44-58, 2024 May.
Article in English | MEDLINE | ID: mdl-38582404

ABSTRACT

Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.


Subject(s)
Cell Differentiation , Cell Movement , Dysferlin , Extracellular Matrix , Myoblasts , Sarcoglycans , Animals , Myoblasts/metabolism , Myoblasts/cytology , Extracellular Matrix/metabolism , Mice , Sarcoglycans/genetics , Sarcoglycans/metabolism , Dysferlin/genetics , Dysferlin/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Dystrophin/genetics , Dystrophin/metabolism , Annexin A2/genetics , Annexin A2/metabolism , Decorin/genetics , Decorin/metabolism , Cell Line , Disease Models, Animal , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL