Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 150: 109655, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796044

ABSTRACT

High proportions of soybean meal in aquafeed have been confirmed to induce various intestinal pathologies. This study aims to investigate the regulatory effects of rosmarinic acid (RA), an antioxidant with anti-inflammatory and antimicrobial properties, when added to high soybean meal feeds in different doses, (0, 0.5, 1, and 4 g/kg). During the 56-day feeding trial, results indicated that, compared to the control group without RA (0 g/kg), the 1 g/kg and 4 g/kg RA groups increased bullfrog survival rates and total weight gain while reducing feed coefficient. Additionally, these doses markedly suppressed the expression of key intestinal inflammatory markers (tlr5, myd88, tnfα, il1ß, cxcl8, cxcl12) and the activity and content of intestinal antioxidants (CAT, MDA, GSH, GPX). Concurrently, RA significantly downregulated the transcription levels of antioxidant-related genes (cat, gpx5, cyba, cybb, mgst, gclc, gsta, gstp), suggesting RA's potential to alleviate intestinal inflammation and oxidative stress induced by high soybean meal and to help downregulate and restore normal expression of antioxidant enzyme genes. However, the 0.5 g/kg RA group did not show a significant improvement in survival rates; instead, it upregulated the transcription of some antioxidant genes (cat, gpx5, cyba, cybb), revealing the complexity and dose-dependency of RA's antioxidant action. Furthermore, RA supplementation significantly reshaped the intestinal microbial community structure and relative abundance in bullfrogs, particularly affecting the genera Hafnia, Phascolarctobacterium, and Lactococcus. Notably, high doses of RA (1 g/kg, 4 g/kg) were able to downregulate pathways associated with the enrichment of gut microbiota in diseases such as Parkinson's, Staphylococcus aureus infection, and Systemic lupus erythematosus, suggesting its potential in anti-inflammatory action and health maintenance to prevent potential diseases.


Subject(s)
Animal Feed , Cinnamates , Depsides , Diet , Dietary Supplements , Glycine max , Oxidative Stress , Rana catesbeiana , Rosmarinic Acid , Animals , Depsides/pharmacology , Depsides/administration & dosage , Glycine max/chemistry , Cinnamates/pharmacology , Cinnamates/administration & dosage , Animal Feed/analysis , Diet/veterinary , Oxidative Stress/drug effects , Rana catesbeiana/immunology , Dietary Supplements/analysis , Inflammation/veterinary , Dose-Response Relationship, Drug , Intestines/drug effects , Intestines/immunology , Random Allocation , Fish Diseases/immunology , Gastrointestinal Microbiome/drug effects , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37833994

ABSTRACT

Elizabethkingia miricola is an emerging opportunistic pathogen that is highly pathogenic in both immunocompromised humans and animals. Once the disease occurs, treatment can be very difficult. Therefore, a deep understanding of the pathological mechanism of Elizabethkingia miricola is the key to the prevention and control of the disease. In this study, we isolated the pathogenic bacteria from bullfrogs with dark skin color, weak limbs, wryneck, and cataracts. Via subsequent morphological observations and a 16S rRNA gene sequence analysis, the pathogen was identified as Elizabethkingia miricola. The histopathological and transmission electron microscopy analysis revealed that the brain was the main target organ. Therefore, brain samples from diseased and healthy bullfrogs were used for the RNA-Seq analysis. The comparative transcriptome analysis revealed that the diseased bullfrog brain was characterized by the immune activation and inflammatory response, which were mediated by the "NOD-like receptor signaling pathway" and the "Toll-like receptor signaling pathway". We also performed qRT-PCR to examine the expression profile of inflammation-related genes, which further verified the reliability of our transcriptome data. Based on the above results, it was concluded that the NOD/Toll-like receptor-related networks that dominate the immune activation and inflammatory response were activated in the brain of Elizabethkingia miricola-infected bullfrogs. This study contributes to the search for therapeutic targets for bullfrog meningitis and provides basic information for establishing effective measures to prevent and control bullfrog meningitis.


Subject(s)
Flavobacteriaceae Infections , Flavobacteriaceae , Meningitis , Animals , Humans , Rana catesbeiana , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/pathology , Ranidae , Signal Transduction
3.
Foods ; 12(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37761176

ABSTRACT

The effects of allicin and antioxidant of bamboo leaves (AOB) on the quality of bullfrogs (Lithobates catesbeiana) during refrigerated storage (4 °C) were investigated. The quality changes in samples treated with deionized water (CK), allicin solution (All), antioxidant of bamboo leaves (AOB), and allicin solution combined with AOB solution (AA) in microbiological, physicochemical, and sensory evaluation were analyzed, respectively. The results demonstrated that combination treatment inhibited the increase in total viable counts, delayed the decrease in amino acid content, and retarded the sensory deterioration. Preservative treatment has an inhibitory effect on the early storage of PBC, which can reduce PBC by about 1.0 log CFU/g. The reduction in thiobarbituric acid (TBA) content and total volatile basic nitrogen (TVB-N) content indicated that combination treatment could better restrain the lipid oxidation and degradation of protein than the CK group and single-treatment group. In addition, the TVB-N content in the AA group still did not exceed the threshold on the 14th day. As a consequence, combination treatment prolonged the shelf life of bullfrogs for another six days. Therefore, allicin and AOB with excellent antioxidant and antimicrobial activity could be an effective approach to delay the biochemical reaction of refrigerated bullfrogs. This study has provided a potential approach for increasing the shelf life of bullfrogs and preserving their quality during refrigerated storage.

4.
Article in English | MEDLINE | ID: mdl-27085304

ABSTRACT

Thyroid hormones (THs), l-thyroxine (T4) and 3,5,3'-triiodothyronine (T3), are essential for vertebrate growth and development. Classically, T4 is 5'-deiodinated to the active hormone, T3, in target tissues which then binds nuclear TH receptors (TRs) and regulates gene transcription. However, it is possible that T4 acts directly on target tissues. Frog metamorphosis is a powerful TR-dependent model for studying TH action. Premetamorphic Rana (Lithobates) catesbeiana tadpoles were injected with 0.1-50 T3 or 0.5-250T4pmol/gbodyweight to account for their 5-fold difference in biological activity and the mRNA profiles in six tissues from well-characterized TH-responsive genes were evaluated after 48h using quantitative real time polymerase chain reaction. 5'-deiodinase-poor tissues should produce superimposable dose-response curves if T4 does not require conversion to T3. This was the case in lung and tail fin; the latter tissue recapitulating these responses in organ culture. 5'-deiodinase-rich tissues should convert T4 to T3. Because T3 has a higher affinity to TRs, a 5-fold higher T4 dose compared to T3 should produce greater transcript induction. This was observed in the brain and for most intestinal transcripts. However, some gene transcripts in the intestine and all transcripts in the back skin produced superimposable response curves suggesting that a direct mode of T4 action is plausible in these tissues. While the liver showed results consistent with its 5'-deiodinase-poor status, we found evidence of an alternate, non-genomic mechanism for two gene transcripts. Therefore, mechanisms not requiring T4 conversion to T3 may play a far greater role than previously thought.


Subject(s)
Larva/drug effects , Metamorphosis, Biological/drug effects , Rana catesbeiana/genetics , Thyroid Hormones/pharmacology , Thyroxine/pharmacology , Triiodothyronine/pharmacology , Animals , Iodide Peroxidase/metabolism , Larva/genetics , Larva/metabolism , Metamorphosis, Biological/genetics , Organ Culture Techniques , Organ Specificity , RNA, Messenger/genetics , Rana catesbeiana/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Thyroid Hormone/genetics , Reverse Transcriptase Polymerase Chain Reaction , Thyroid Hormones/genetics , Thyroxine/genetics , Triiodothyronine/genetics
5.
Respir Physiol Neurobiol ; 188(2): 180-91, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23791823

ABSTRACT

Spatially distinct, interacting oscillators in the bullfrog medulla generate and coordinated buccal and lung ventilatory rhythms, but how these rhythms are transmitted onto trigeminal and hypoglossal motor neurons is unknown. Using a vertically-mounted isolated brainstem preparation, the Sheep Dip, we identified the regions of the brainstem containing motor nuclei using a solution capable of blocking synaptic release and, following washout, locally exposed these regions to 5 µM NBQX and/or 50 µM AP5. Local application of NBQX significantly reduced the amplitude of buccal and lung bursts on the trigeminal nerve, and lung bursts on the hypoglossal nerve. Local AP5 caused a significant reduction in lung burst amplitude on both nerves, but for buccal bursts, hypoglossal amplitude increased and trigeminal amplitude was unchanged. Local co-application of NBQX and AP5 eliminated fictive respiratory motor output completely in both nerves. These results are consistent with mammalian data, suggesting a critical role for glutamate in transmission of respiratory activity from oscillators to motor neurons.


Subject(s)
Brain Stem/cytology , Motor Neurons/physiology , Respiratory Mechanics/physiology , Action Potentials/physiology , Animals , Choline O-Acetyltransferase/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Fluoresceins/metabolism , Hypoglossal Nerve/physiology , In Vitro Techniques , Magnesium/pharmacology , Motor Neurons/drug effects , Physical Stimulation , Quinoxalines/pharmacology , Rana catesbeiana , Trigeminal Nerve/physiology , Valine/analogs & derivatives , Valine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL