Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Herb Med ; 36: 100601, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36188629

ABSTRACT

Introduction: Different classes of disease-causing viruses are widely distributed universally. Plant-based medicines are anticipated to be effective cures for viral diseases including the COVID-19, instigated by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). This study displays the phylogenetic perspective of Artemisia and proposes some candidate taxa against different viral diseases, including SARS-CoV-2. Methods: Data of Artemisia with antiviral activity were obtained from different published sources and electronic searches. A phylogenetic analysis of the nrDNA ITS sequences of reported antiviral Artemisia species, along with the reference species retrieved from the NCBI GenBank database, was performed using the maximum likelihood (ML) approach. Results: In total, 23 Artemisia species have been documented so far with antiviral activity for 17 different types of viral diseases. 17 out of 23 antiviral Artemisia species were included in the ITS phylogeny, which presented the distribution of these antiviral Artemisia species in clades corresponding to different subgenera of the genus Artemisia. In the resultant ML tree, 10 antiviral Artemisia species appeared within the subgenus Artemisia clade, 2 species appeared within the subgenus Absinthium clade, 3 species appeared within the subgenus Dracunculus clade, and 2 species appeared within the subgenus Seriphidium clade. Discussion: Artemisia species from different subgenera with antiviral activity are prevalent in the genus, with most antiviral species belonging to the subgenus Artemisia. A detailed analysis of taxa from all subgenera, particularly the subgenus Artemisia, is therefore proposed in order to discover compounds with potential anti-SARS-CoV-2 activity.

2.
Acta Pharm Sin B ; 4(5): 333-49, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26579403

ABSTRACT

Lipid-based formulations have been an attractive choice among novel drug delivery systems for enhancing the solubility and bioavailability of poorly soluble drugs due to their ability to keep the drug in solubilized state in the gastrointestinal tract. These formulations offer multiple advantages such as reduction in food effect and inter-individual variability, ease of preparation, and the possibility of manufacturing using common excipients available in the market. Despite these advantages, very few products are available in the present market, perhaps due to limited knowledge in the in vitro tests (for prediction of in vivo fate) and lack of understanding of the mechanisms behind pharmacokinetic and biopharmaceutical aspects of lipid formulations after oral administration. The current review aims to provide a detailed understanding of the in vivo processing steps involved after oral administration of lipid formulations, their pharmacokinetic aspects and in vitro in vivo correlation (IVIVC) perspectives. Various pharmacokinetic and biopharmaceutical aspects such as formulation dispersion and lipid digestion, bioavailability enhancement mechanisms, impact of excipients on efflux transporters, and lymphatic transport are discussed with examples. In addition, various IVIVC approaches towards predicting in vivo data from in vitro dispersion/precipitation, in vitro lipolysis and ex vivo permeation studies are also discussed in detail with help of case studies.

SELECTION OF CITATIONS
SEARCH DETAIL