Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Sci Total Environ ; 951: 175622, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39163943

ABSTRACT

Neonicotinoid insecticides move from targeted crops to wildflowers located in adjacent field margins, acting as a potential exposure source for wild pollinators and insect species of conservation concern, including monarch butterflies. Monarchs rely on milkweed over multiple life stages, including as a host plant for eggs and a food source for both larvae (leaves) and adults (flowers). Milkweeds, which are closely associated with field margins, can contain neonicotinoid residues, but previous assessments are constrained to a single plant tissue type. In 2017 and 2018, we sampled milkweeds from 95 field margins adjacent to crop fields (corn, soybean, hay, wheat, and barley) in agricultural landscapes of eastern Ontario, Canada. Milkweeds were sampled during the flower blooming period and leaves and flower tissues were analysed. The neonicotinoids acetamiprid, clothianidin, thiamethoxam, and thiacloprid were detected. Maximum concentrations in leaf samples included 10.30 ng/g of clothianidin in 2017, and 24.4 ng/g of thiamethoxam in 2018. Clothianidin and thiamethoxam percent detections in flowers (72 % and 61 %, respectively) were significantly higher than detections in leaves (24 % and 31 %, respectively). Thiamethoxam concentrations were significantly higher in paired flower samples than leaf samples (median 0.33 ng/g vs <0.07 ng/g) while clothianidin concentrations also trended higher in flowers (median 0.18-0.55 ng/g vs <0.18 ng/g). Only thiamethoxam showed significant differences between years, and we found no effect of crop type, with hay, soybean and corn fields all yielding 50-56 % detections in leaves. We found significantly higher concentrations in older milkweed flowers than young flowers or leaves (medians 0.87 ng/g vs <0.18 ng/g and 0.45 ng/g vs <0.07 ng/g for clothianidin and thiamethoxam, respectively). Our results highlight the importance of considering variation in milkweed tissue type and age of flowers in neonicotinoid exposure risk assessments. Efforts to increase milkweed availability in agricultural landscapes should consider how exposure to neonicotinoids can be mitigated.


Subject(s)
Agriculture , Insecticides , Neonicotinoids , Neonicotinoids/analysis , Insecticides/analysis , Animals , Ontario , Environmental Monitoring , Pollination , Plant Leaves/chemistry , Asclepias , Flowers
2.
Environ Toxicol Chem ; 43(9): 2039-2044, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38967272

ABSTRACT

Data from prior research indicate the prepupal stage of the monarch butterfly life cycle is more sensitive to clothianidin exposure than the larval stage. A set of experiments was conducted to determine if the dietary clothianidin exposures that cause prepupal mortality are environmentally relevant. Monarch larvae were raised from egg to pupae on clothianidin-contaminated swamp milkweed plants (Asclepias incarnata). Larval growth as well as larval and prepupal survival were monitored throughout the experiments, in which the exposures ranged from 1.4 to 2793.1 ng/g leaf. Exposures of 5.4 to 46.9 ng/g leaf resulted primarily in prepupal mortality, whereas higher exposures of 1042.4 to 2793.1 ng/g leaf resulted exclusively in larval mortality, indicating the prepupal stage is more sensitive to clothianidin exposure than the larval stage. A median lethal concentration and a 10% lethal concentration of 37 and 6 ng/g leaf, respectively, were estimated for prepupal mortality. Both effect concentrations are within the range of clothianidin concentrations reported in leaves collected from wild milkweed plants, indicating prepupal mortality is an environmentally relevant effect. Environ Toxicol Chem 2024;43:2039-2044. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Butterflies , Guanidines , Insecticides , Larva , Neonicotinoids , Thiazoles , Animals , Butterflies/drug effects , Butterflies/growth & development , Thiazoles/toxicity , Neonicotinoids/toxicity , Guanidines/toxicity , Larva/drug effects , Larva/growth & development , Insecticides/toxicity , Asclepias , Plant Leaves/chemistry , Pupa/drug effects , Pupa/growth & development , Dietary Exposure
3.
Plant Cell Environ ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011992

ABSTRACT

Over the last decade, a large effort has been made to understand how extreme climate events disrupt species interactions. Yet, it is unclear how these events affect plants and herbivores directly, via metabolic changes, and indirectly, via their subsequent altered interaction. We exposed common milkweed (Asclepias syriaca) and monarch caterpillars (Danaus plexippus) to control (26:14°C, day:night) or heat wave (HW) conditions (36:24°C, day:night) for 4 days and then moved each organism to a new control or HW partner to disentangle the direct and indirect effects of heat exposure on each organism. We found that the HW directly benefited plants in terms of growth and defence expression (increased latex exudation and total cardenolides) and insect her'bivores through faster larval development. Conversely, indirect HW effects caused both plant latex and total cardenolides to decrease after subsequent herbivory. Nonetheless, increasing trends of more toxic cardenolides and lower leaf nutritional quality after herbivory by HW caterpillars likely led to reduced plant damage compared to controls. Our findings reveal that indirect impacts of HWs may play a greater role in shaping plant-herbivore interactions via changes in key physiological traits, providing valuable understanding of how ecological interactions may proceed in a changing world.

4.
Insects ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786865

ABSTRACT

An invasive spider from East Asia has established in the U.S. southeast (the "joro spider," Trichonephila clavata) and is rapidly expanding its range. Studies assessing the impact of this species are needed, including how expansive its diet is. An open question is whether monarch butterflies, Danaus plexippus, are a potential prey item for this spider, given that joro spiders do not coexist with monarchs in their native range. Since monarch larvae feed on milkweed, they sequester cardiac glycosides into their adult tissues, rendering them unpalatable to many predators. At sites within northeast Georgia, we staged a series of trials (n = 61) where we tossed monarchs into joro spider webs and, for comparison, performed similar trials with another aposematic species, gulf fritillary (Agraulis vanilla), and a palatable species, tiger swallowtail (Papilio glaucus). We recorded the outcome of the trials, which included whether the spider attacked or did not attack the prey. We also conducted a visual survey during the same fall season to look for evidence of joro spiders consuming monarchs naturally. Our findings revealed that joro spiders avoided eating monarchs; spiders only attacked monarchs 20% of the time, which was significantly less than the attack rates of similarly sized or larger butterflies: 86% for gulf fritillaries and 58% for tiger swallowtails. Some joro spiders even removed monarchs from their webs. From our visual surveys of the surrounding area, we found no evidence of natural monarch consumption and, in general, butterflies made up only a fraction of the joro spider diet. We conclude that joro spiders appear to recognize monarch butterflies as being unpalatable, even without having a prior history with the species. This invokes questions about how these spiders can immediately recognize their unpalatability without touching the butterflies.

5.
Ecol Evol ; 14(2): e11024, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38414566

ABSTRACT

Scoring the penetrance of heterozygotes in complex phenotypes, like colour pattern, is difficult and complicates the analysis of systems in which dominance is incomplete or evolving. The African Monarch (Danaus chrysippus) represents an example where colour pattern heterozygotes, formed in the contact zone between the different subspecies, show such intermediate dominance. Colour pattern in this aposematic butterfly is controlled by three loci A, B and C. The B and C loci are closely linked in a B/C supergene and significant interaction of B and C phenotypes is therefore expected via linkage alone. The A locus, however, is not linked to B/C and is found on a different chromosome. To study interactions between these loci we generated colour pattern heterozygotes by crossing males and females bearing different A and B/C genotypes, collected from different parts of Africa. We derived a novel scoring system for the expressivity of the heterozygotes and, as predicted, we found significant interactions between the genotypes of the closely linked B and C loci. Surprisingly, however, we also found highly significant interactions between C and the unlinked A locus, modifications that generally increased the resemblance of heterozygotes to homozygous ancestors. In contrast, we found no difference in the penetrance of any of the corresponding heterozygotes from crosses conducted either in allopatry or sympatry, in reciprocal crosses of males and females, or in the presence or absence of endosymbiont mediated male-killing or its associated neoW mediated sex-linkage of colour pattern. Together, this data supports the idea that the different colour morphs of the African Monarch meet transiently in the East African contact zone and that genetic modifiers act to mask inappropriate expression of colour patterns in the incorrect environments.

6.
J Cancer ; 15(4): 880-888, 2024.
Article in English | MEDLINE | ID: mdl-38230209

ABSTRACT

Single pulmonary nodules are a difficult to diagnose imagining artifact. Currently novel diagnostic tools such as Radial-EBUS with or not C-ARM flouroscopy, electromagnetic navigation systems, robotic bronchoscopy and cone beam-compuer tomography (CBCT) can assist in the optimal guidance of biopsy equipment. After diagnosis of lung cancer or metastatic disease as pulmonary nodule, then surgery or ablation methods as local treatment can be applied. The percutaneous ablation systems under computed tomography guidance with radiofrequency, microwave, cryo and thermosphere have been used for several years. In the past 10 years extensive research has been made for endobronchial ablation systems and methods. We will present and comment on the two different ablation methods and present up to date data.

7.
Sci Total Environ ; 916: 170288, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266736

ABSTRACT

Pesticides use raises concerns regarding environmental sustainability, as pesticides are closely linked to the decline of biodiversity and adverse human health outcomes. This study proposed a holistic approach for assessing the potential risks posed by pesticides for human health and the environment in the eastern region of Michoacan, where extensive agricultural lands, especially corn and avocado fields, surround the Monarch Butterfly Biosphere Reserve. We used a combination of qualitative (semi-structured interviews) and quantitative (chemical analysis) data. Fifty-five interviews with smallholder farmers allowed us to identify pesticide types, quantities, frequencies, and application methods. A robust and precise analytical method based on solid-phase extraction and LC-MS/MS was developed and validated to quantify 21 different pesticides in 16 water samples (rivers, wells, runoff areas). We assessed environmental and human health risks based on the pesticides detected in the water samples and reported in the interviews. The interviews revealed the use of 28 active ingredients, including glyphosate (29 % of respondents), imidacloprid (27 %), and benomyl (24 %). The pesticide analysis showed the presence of 13 different pesticides and degradation products in the water samples. The highest concentrations were found for imidacloprid (1195 ngL-1) and carbendazim (a degradation product of benomyl; 932 ngL-1), along with the metabolite of pyrethroid insecticides, 3-PBA (494 ngL-1). The risk assessment indicates that among the most used pesticides, the fungicide benomyl and carbendazim pose the highest risk to human health and aquatic ecosystems, respectively. This study unveils novel insights on agricultural practices for the avocado, a globally consumed crop that is undergoing rapid production expansion. It calls for the harmonisation of crop protection with environmental responsibility, safeguarding the health of the people involved and the surrounding ecosystems.


Subject(s)
Benzimidazoles , Carbamates , Neonicotinoids , Nitro Compounds , Persea , Pesticides , Water Pollutants, Chemical , Humans , Pesticides/analysis , Water/analysis , Ecosystem , Benomyl/analysis , Mexico , Chromatography, Liquid , Tandem Mass Spectrometry , Rivers , Risk Assessment , Surveys and Questionnaires , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
8.
Ecol Lett ; 27(1): e14340, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38017619

ABSTRACT

Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.


Subject(s)
Asclepias , Butterflies , Animals , Butterflies/genetics , Larva , Asclepias/chemistry , Cardenolides/toxicity , Adenosine Triphosphatases
9.
Evol Dev ; 26(1): e12463, 2024 01.
Article in English | MEDLINE | ID: mdl-37971877

ABSTRACT

Monarch butterflies (Danaus plexippus) are well studied for their annual long-distance migration from as far north as Canada to their overwintering grounds in Central Mexico. At the end of the cold season, monarchs start to repopulate North America through short-distance migration over the course of multiple generations. Interestingly, some populations in various tropical and subtropical islands do not migrate and exhibit heritable differences in wing shape and size, most likely an adaptation to island life. Less is known about forewing differences between long- and short-distance migrants in relation to island populations. Given their different migratory behaviors, we hypothesized that these differences would be reflected in wing morphology. To test this, we analyzed forewing shape and size of three different groups: nonmigratory, lesser migratory (migrate short-distances), and migratory (migrate long-distances) individuals. Significant differences in shape appear in all groups using geometric morphometrics. As variation found between migratory and lesser migrants has been shown to be caused by phenotypic plasticity, and lesser migrants develop intermediate forewing shapes between migratory and nonmigratory individuals, we suggest that genetic assimilation might be an important mechanism to explain the heritable variation found between migratory and nonmigratory populations. Additionally, our research confirms previous studies which show that forewing size is significantly smaller in nonmigratory populations when compared to both migratory phenotypes. Finally, we found sexual dimorphism in forewing shape in all three groups, but for size in nonmigratory populations only. This might have been caused by reduced constraints on forewing size in nonmigratory populations.


Subject(s)
Butterflies , Wings, Animal , Animals , Animal Migration , Butterflies/genetics , Mexico , Wings, Animal/anatomy & histology
10.
Ecol Evol ; 13(12): e10766, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38152348

ABSTRACT

Migratory animals follow seasonal cycles comprising linked phases often with different habitat requirements and demographic processes. Conservation of migratory species therefore must consider the full seasonal cycle to identify points limiting population viability. For western monarch butterflies, which have experienced significant declines, early spring is considered a critical period in the annual population cycle. However, records of western monarchs in early spring, when overall abundance is lowest, have historically been extremely limited. We used a community science initiative, the Western Monarch Mystery Challenge, to collect data on monarch distribution throughout the western United States between February 14th and April 22nd over 3 years. Using data from the Western Monarch Mystery Challenge and iNaturalist, we identified potential breeding habitat for western monarchs in early spring that spanned a large geographic area and several ecoregions. We observed monarchs in early spring that likely eclosed in the current year, suggesting that population expansion from overwintering sites reflects both movement and population growth. The number of records of western monarchs from early spring was higher during the Mystery Challenge (33.0/year) than earlier years (5.1/year). This study demonstrates the potential for and limitations of community science to increase our understanding of species at points in the life cycle when they are rare.

11.
Proc Biol Sci ; 290(2008): 20231616, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37817587

ABSTRACT

Life-history theory predicts that increased investment in traits related to reproduction will be associated with a reduced ability to invest in survival or longevity. One mechanistic explanation for this trade-off is that metabolic stress generated from current fitness activities (e.g. reproduction or locomotion) will increase somatic damage, leading to reduced longevity. Yet, there has been limited support for this damage-based hypothesis. A possible explanation is that individuals can respond to increases in metabolic stress by plastically inducing cellular maintenance responses, which may increase, rather than decrease, longevity. We tested this possibility by experimentally manipulating investment in flight activity (a metabolic stressor) in the migratory monarch butterfly (Danaus plexippus), a species whose reproductive fitness is dependent on survival through a period of metabolically intensive migratory flight. Consistent with the idea that metabolic stress stimulated investment in self-maintenance, increased flight activity enhanced monarch butterfly longevity and somatic tissue antioxidant capacity, likely at a cost to reproductive investment. Our study implicates a role for metabolic stress as a driver of life-history plasticity and supports a model where current engagement in metabolically stressful activities promotes somatic survival by stimulating investment in self-maintenance processes.


Subject(s)
Butterflies , Humans , Animals , Butterflies/physiology , Antioxidants/metabolism , Longevity/physiology , Reproduction/physiology , Stress, Physiological
12.
Isotopes Environ Health Stud ; 59(4-6): 476-489, 2023.
Article in English | MEDLINE | ID: mdl-37722835

ABSTRACT

Stable isotope (δ2H, δ13C) measurements of wing tissue have been used to determine the natal geographic origin of migrant monarch butterflies that overwinter in Mexico. This study examines the possibility of using δ13C and δ15N to identify the milkweed habitat used by monarchs in their natal region. Milkweeds were common in corn and soybean fields before herbicide use led to their extirpation around 2006, and the loss of those milkweeds has been proposed as a reason for the monarch population decline. If crop-field monarchs can be identified, then historical samples of monarchs could be examined to test that hypothesis. The δ15N and δ13C values of leaves from milkweeds growing in corn fields, soybean fields and non-agricultural habitats were examined as well as monarchs that were raised on those leaves. There were no δ15N values for leaves or monarchs that were distinctive for crop fields. Milkweeds in corn fields, and monarchs that were raised on those milkweeds, were found to have δ13C values distinctly lower than those of other habitats and unlike those of locations within the summer breeding range. Thus, it should be possible to identify monarchs that came from cornfields in samples of overwintering monarchs made before ca. 2006.


Subject(s)
Asclepias , Butterflies , Animals , Animal Migration , Ecosystem , Seasons , Zea mays
13.
Curr Biol ; 33(17): 3702-3710.e5, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37607548

ABSTRACT

In intimate ecological interactions, the interdependency of species may result in correlated demographic histories. For species of conservation concern, understanding the long-term dynamics of such interactions may shed light on the drivers of population decline. Here, we address the demographic history of the monarch butterfly, Danaus plexippus, and its dominant host plant, the common milkweed Asclepias syriaca (A. syriaca), using broad-scale sampling and genomic inference. Because genetic resources for milkweed have lagged behind those for monarchs, we first release a chromosome-level genome assembly and annotation for common milkweed. Next, we show that despite its enormous geographic range across eastern North America, A. syriaca is best characterized as a single, roughly panmictic population. Using approximate Bayesian computation with random forests (ABC-RF), a machine learning method for reconstructing demographic histories, we show that both monarchs and milkweed experienced population expansion during the most recent recession of North American glaciers 10,000-20,000 years ago. Our data also identify concurrent population expansions in both species during the large-scale clearing of eastern forests (∼200 years ago). Finally, we find no evidence that either species experienced a reduction in effective population size over the past 75 years. Thus, the well-documented decline of monarch abundance over the past 40 years is not visible in our genomic dataset, reflecting a possible mismatch of the overwintering census population to effective population size in this species.


Subject(s)
Asclepias , Butterflies , Animals , Asclepias/genetics , Butterflies/genetics , Bayes Theorem , Population Density , Genomics
14.
BMC Genomics ; 24(1): 278, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37226080

ABSTRACT

Apicomplexa are ancient and diverse organisms which have been poorly characterized by modern genomics. To better understand the evolution and diversity of these single-celled eukaryotes, we sequenced the genome of Ophryocystis elektroscirrha, a parasite of monarch butterflies, Danaus plexippus. We contextualize our newly generated resources within apicomplexan genomics before answering longstanding questions specific to this host-parasite system. To start, the genome is miniscule, totaling only 9 million bases and containing fewer than 3,000 genes, half the gene content of two other sequenced invertebrate-infecting apicomplexans, Porospora gigantea and Gregarina niphandrodes. We found that O. elektroscirrha shares different orthologs with each sequenced relative, suggesting the true set of universally conserved apicomplexan genes is very small indeed. Next, we show that sequencing data from other potential host butterflies can be used to diagnose infection status as well as to study diversity of parasite sequences. We recovered a similarly sized parasite genome from another butterfly, Danaus chrysippus, that was highly diverged from the O. elektroscirrha reference, possibly representing a distinct species. Using these two new genomes, we investigated potential evolutionary response by parasites to toxic phytochemicals their hosts ingest and sequester. Monarch butterflies are well-known to tolerate toxic cardenolides thanks to changes in the sequence of their Type II ATPase sodium pumps. We show that Ophryocystis completely lacks Type II or Type 4 sodium pumps, and related proteins PMCA calcium pumps show extreme sequence divergence compared to other Apicomplexa, demonstrating new avenues of research opened by genome sequencing of non-model Apicomplexa.


Subject(s)
Apicomplexa , Butterflies , Parasites , Animals , Butterflies/genetics , Sodium-Potassium-Exchanging ATPase , Apicomplexa/genetics , Sodium
15.
Ther Adv Med Oncol ; 15: 17588359231152843, 2023.
Article in English | MEDLINE | ID: mdl-36861085

ABSTRACT

Background: A cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) + endocrine therapy is recommended as first-line treatment for hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) advanced breast cancer (ABC). Quality of life (QoL) is an important endpoint that affects treatment decisions. Understanding the relevance of CDK4/6i treatment on QoL is gaining importance given use in earlier treatment lines for ABC and an emerging role in treating early breast cancer in which QoL may be more impactful. In the absence of head-to-head trial data, a matching-adjusted indirect comparison (MAIC) permits comparative efficacy between trials. Objective: In this analysis, patient-reported QoL for MONALEESA-2 [ribociclib + aromatase inhibitor (AI)] and MONARCH 3 (abemaciclib + AI) was compared using MAIC with a focus on individual domains. Design: An anchored MAIC of QoL comparing ribociclib + AI versus abemaciclib + AI was performed using data from the European Organization for Research and Treatment of Cancer quality of life questionnaire (QLQ)-C30 and BR-23 questionnaires. Methods: Individual patient data from MONALEESA-2 and published aggregated data from MONARCH 3 were included in this analysis. Time to sustained deterioration (TTSD) was calculated as the time from randomization to a ⩾10-point deterioration with no later improvement above this threshold. Results: Patients from the ribociclib (n = 205) and placebo (n = 149) arms of MONALEESA-2 were matched with patients from the abemaciclib (n = 328) and placebo (n = 165) arms of MONARCH 3. After weighting, baseline patient characteristics were well balanced. TTSD significantly favored ribociclib versus abemaciclib in appetite loss [hazard ratio (HR), 0.46; 95% confidence interval (CI), 0.27-0.81], diarrhea (HR, 0.42; 95% CI, 0.23-0.79), fatigue (HR, 0.63; 95% CI, 0.41-0.96), and arm symptoms (HR, 0.49; 95% CI, 0.30-0.79). TTSD did not significantly favor abemaciclib compared with ribociclib in any functional or symptom scale of the QLQ-C30 or BR-23 questionnaires. Conclusions: This MAIC indicates that ribociclib + AI is associated with better symptom-related QoL than abemaciclib + AI for postmenopausal patients with HR+/HER2- ABC treated in the first-line setting. Trial registration: NCT01958021 (MONALEESA-2) and NCT02246621 (MONARCH 3).

16.
Ecol Evol ; 13(2): e9796, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36844673

ABSTRACT

Environmental heterogeneity in temperate latitudes is expected to maintain seasonally plastic life-history strategies that include the tuning of morphologies and metabolism that support overwintering. For species that have expanded their ranges into tropical latitudes, it is unclear the extent to which the capacity for plasticity will be maintained or will erode with disuse. The migratory generations of the North American (NA) monarch butterfly Danaus plexippus lead distinctly different lives from their summer generation NA parents and their tropical descendants living in Costa Rica (CR). NA migratory monarchs postpone reproduction, travel thousands of kilometers south to overwinter in Mexico, and subsist on little food for months. Whether recently dispersed populations of monarchs such as those in Costa Rica, which are no longer subject to selection imposed by migration, retain ancestral seasonal plasticity is unclear. To investigate the differences in seasonal plasticity, we reared the NA and CR monarchs in summer and autumn in Illinois, USA, and measured the seasonal reaction norms for aspects of morphology and metabolism related to flight. NA monarchs were seasonally plastic in forewing and thorax size, increasing wing area and thorax to body mass ratio in autumn. While CR monarchs increased thorax mass in autumn, they did not increase the area of the forewing. NA monarchs maintained similar resting and maximal flight metabolic rates across seasons. However, CR monarchs had elevated metabolic rates in autumn. Our findings suggest that the recent expansion of monarchs into habitats that support year-round breeding may be accompanied by (1) the loss of some aspects of morphological plasticity as well as (2) the underlying physiological mechanisms that maintain metabolic homeostasis in the face of temperature heterogeneity.

17.
Glob Chang Biol ; 29(8): 2122-2131, 2023 04.
Article in English | MEDLINE | ID: mdl-36598286

ABSTRACT

Monarch butterflies (Danaus plexippus) undergo an iconic multi-generational migration, traveling thousands of kilometers from the summer breeding grounds in southern Canada to overwintering sites in central Mexico. This migration phenomena can be affected by climate change, which may have important implications on fitness and ultimately populations status. We investigated the long-term trends in fall migration phenology of monarchs using a 25-year dataset collected along the coast of Lake Erie in Ontario, Canada. We also investigated local long-term trends in weather covariates that have the potential to influence migration phenology at this site. Patterns in standardized daily counts of monarchs were compared with local weather covariates using two methods (i.e., monthly averages and moving windows) to assess difference in outputs between analytical approaches. Our results suggest that monarch migration timing (migration midpoint, average peak, first peak, and late passage) and weather covariates have been consistent over time, in direct contrast to a similar study in Cape May, New Jersey, which showed a significant increase in both fall temperature and a 16- to 19-day shift in monarch migration timing. Furthermore, our results differed between analytical approaches. With respect to annual variability in air temperature, our monthly average analysis suggested that for each degree increase in September air temperature, late season passage would advance 4.71 days (±1.59 SE, p = .01). However, the moving window analysis suggested that this result is likely spurious and found no significant correlations between migration timing and any weather covariates. Importantly, our results caution against extrapolating the effects of climate change on the migration phenology of the monarch across study regions and the need for more long-term monitoring efforts to better understand regional drivers of variability in migration timing.


Subject(s)
Butterflies , Animals , Seasons , Population Dynamics , Animal Migration , Ontario
18.
J Digit Imaging ; 36(2): 510-525, 2023 04.
Article in English | MEDLINE | ID: mdl-36385675

ABSTRACT

In the human body, cancer is caused by aberrant cell proliferation. Brain tumors are created when cells in the human brain proliferate out of control. Brain tumors consist of two types: benign and malignant. The aberrant parts of benign tumors, which contain dormant tumor cells, can be cured with the appropriate medication. On the other hand, malignant tumors are tumors that contain abnormal cells and an unorganized area of these abnormal cells that cannot be treated with medication. Therefore, surgery is required to remove these brain tumors. Brain cancers are manually identified and diagnosed by a skilled radiologist using traditional procedures. It's a lengthy and error-prone procedure. As a result, it is unsuitable for emerging countries with large populations. So computer-assisted automatic identification and diagnosis of brain tumors are recommended. This work proposes and implements a CAD system for the diagnosis of brain cancers using magnetic resonance imaging (MRI). Preprocessing, segmentation, feature extraction, and classification are the stages of automatic brain MRI processing that necessitate software based on a sophisticated algorithm. Image normalization with contourlet transform (INCT) is used in the preprocessing step to remove undesirable or noisy data. The performance metrics such as PSNR, MSE, and RMSE are computed. Then, the modified hierarchical k-means with firefly clustering (MHKFC) technique is used in the segmentation step to precisely recover the afflicted (tumor) area from the preprocessed image. The enhanced monarch butterfly optimization (EMBO) is used to select and then extract the most important gray-level co-occurrence matrix feature from the segmented image. The classification task was finally completed using the adaptive neuro-fuzzy inference system (ANFIS). The overall classification accuracy is 95.4% ( BRATS 2015), 96.6% ( BRATS 2021), and 93.7% (clinical data) is obtained.


Subject(s)
Brain Neoplasms , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Fuzzy Logic , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain/diagnostic imaging , Algorithms , Magnetic Resonance Imaging/methods
19.
J Insect Sci ; 22(6)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36562324

ABSTRACT

Monarch butterflies (Danaus plexippus) use bright orange coloration to warn off predators as well as for sexual selection. Surprisingly the underlying pigment compounds have not been previously characterized. We used LCMS and fragmentation MS (including MSMS and MSn) of extracted pigments from nonmigratory summer-generation female monarch forewings to identify and provide relative quantitation of various orange pigments from D. plexippus. We observed seven ommochrome pigments, with xanthommatin and decarboxylated xanthommatin being the most abundant followed by xanthommatin methyl ester. Among the seven pigments, we also observed molecules that correspond to deaminated forms of these three amine-containing pigments. To the best of our knowledge, these deaminated compounds have not been previously discovered. A seventh pigment that we observed was α-hydroxyxanthommatin methyl ester, previously described in other nymphalid butterflies. We also show that chemical reduction of pigment extracts results in a change of their color from yellow to red, concomitant with the appearance of dihydro-xanthommatin and similarly reduced forms of the other pigment compounds. These findings indicate that monarchs may employ differences in the redox states of these pigments in order to achieve different hues of orange.


Subject(s)
Butterflies , Female , Animals , Phenothiazines , Wings, Animal , Seasons
20.
Bioscience ; 72(12): 1176-1203, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36451972

ABSTRACT

The North American monarch butterfly (Danaus plexippus) is a candidate species for listing under the Endangered Species Act. Multiple factors are associated with the decline in the eastern population, including the loss of breeding and foraging habitat and pesticide use. Establishing habitat in agricultural landscapes of the North Central region of the United States is critical to increasing reproduction during the summer. We integrated spatially explicit modeling with empirical movement ecology and pesticide toxicology studies to simulate population outcomes for different habitat establishment scenarios. Because of their mobility, we conclude that breeding monarchs in the North Central states should be resilient to pesticide use and habitat fragmentation. Consequently, we predict that adult monarch recruitment can be enhanced even if new habitat is established near pesticide-treated crop fields. Our research has improved the understanding of monarch population dynamics at the landscape scale by examining the interactions among monarch movement ecology, habitat fragmentation, and pesticide use.

SELECTION OF CITATIONS
SEARCH DETAIL