Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Biochem Pharmacol ; 226: 116382, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909785

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.


Subject(s)
Exosomes , HSP90 Heat-Shock Proteins , Hypertension, Pulmonary , MAP Kinase Signaling System , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Animals , Exosomes/metabolism , Exosomes/transplantation , Male , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/therapy , Mesenchymal Stem Cells/metabolism , Rats , HSP90 Heat-Shock Proteins/metabolism , MAP Kinase Signaling System/physiology , Hypoxia/metabolism , Hypoxia/therapy , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology
2.
Immun Inflamm Dis ; 12(4): e1243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577988

ABSTRACT

OBJECTIVE: To explore the role of interleukin (IL)-17 in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and to investigate its possible mechanism on pulmonary artery smooth muscle cells (PASMCs). METHODS: Enzyme-linked immunosorbent assay (ELISA) were used to compare levels of serum IL-17 in patients with CTD-PAH and healthy controls (HCs). After treatment for 3 months, the serum IL-17 levels were tested in CTD-PAH. ELISA and immunohistochemistry were used to compare levels of serum IL-17 and numbers of pulmonary artery IL-17+ cells, respectively, in a rat model of monocrotaline-induced PAH and untreated rats. Proliferation, migration, and inflammatory factors expression of PASMCs were assessed after stimulation with different concentrations of IL-17 for various time periods. Proteins in the mitogen-activated protein kinase (MAPK) pathway were examined by western blot. RESULTS: Levels of IL-17 were upregulated in patients with CTD-PAH compared to HCs. After 3 months of treatment, serum IL-17 levels were downregulated with pulmonary artery pressure amelioration. Moreover, serum IL-17 levels and numbers of IL-17+ cells infiltrating lung arterioles were increased in PAH model rats. IL-17 could dose- and time-dependently promote proliferation and migration of PASMCs as well as time-dependently induce IL-6 and intercellular cell adhesion molecule-1 (ICAM-1) expression. The levels of MKK6 increased after IL-17 treatment. Inhibition of MAPK decreased proliferation of PASMCs. CONCLUSION: Levels of IL-17 may increase in CTD-PAH, and IL-17 promotes proliferation, migration, and secretion of IL-6 and ICAM in PASMCs, respectively, which likely involves the p-38 MAPK pathway.


Subject(s)
Interleukin-17 , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Animals , Humans , Rats , Cell Proliferation , Interleukin-17/metabolism , Interleukin-17/pharmacology , Interleukin-6/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism
3.
FASEB J ; 38(3): e23452, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38308640

ABSTRACT

Autophagy is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). We aimed to investigate whether the p62-Keap1-Nrf2 pathway affects the development of PAH by mediating autophagy. A PAH rat model was established using monocrotaline (MCT). Pulmonary artery smooth muscle cells (PASMCs) were extracted, and the changes in proliferation, migration, autophagy, and oxidative stress were analyzed following overexpression or knockdown of p62. The impact of p62 on the symptoms of PAH rats was assessed by the injection of an adenovirus overexpressing p62. We found that the knockdown of p62 increased the proliferation and migration of PASMCs, elevating the oxidative stress of PASMCs and upregulating gene expression of NADPH oxidases. Co-IP assay results demonstrated that p62 interacted with Keap1. p62 knockdown enhanced Keap1 protein stability and Nrf2 ubiquitination. LC3II/I and ATG5 were expressed more often when p62 was knocked down. Treating with an inhibitor of autophagy reversed the impact of p62 knockdown on PASMCs. Nrf2 inhibitor treatment reduced the expression of Nrf2 and p62, while increasing the expression of Keap1, LC3II/I, and ATG5 in PASMCs. However, overexpressing p62 diminished mRVP, SPAP, and Fulton index in PAH rats and attenuated pulmonary vascular wall thickening. Overexpression of p62 also decreased the expression of Keap1, LC3II/I, and ATG5 and increased the nuclear expression of Nrf2 in PAH rats. Importantly, overexpression of p62 reduced oxidative stress and the NADPH oxidase expression in PAH rats. Overall, activation of the p62-Keap1-Nrf2 positive feedback signaling axis reduces the proliferation and migration of PASMCs and alleviates PAH by inhibiting autophagy and oxidative stress.


Subject(s)
Pulmonary Arterial Hypertension , Animals , Rats , Autophagy/physiology , Cell Proliferation , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Monocrotaline , Myocytes, Smooth Muscle/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/metabolism
4.
Am J Hypertens ; 37(1): 33-45, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37738301

ABSTRACT

BACKGROUND: Uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) contributes to the pathogenesis of pulmonary arterial hypertension (PAH). In this work, we defined the precise part of circ_0068481 in PASMC proliferation and migration induced by hypoxia. We hypothesized that circ_0068481 enhanced hypoxia-induced PASMC proliferation, invasion, and migration through the microRNA (miR)-361-3p/Krüppel-like factor 5 (KLF5) pathway. METHODS: Human PASMCs (hPASMCs) were exposed to hypoxic (3% O2) conditions. Circ_0068481, miR-361-3p, and KLF5 levels were gauged by qRT-PCR and western blot. Cell viability, proliferation, invasion, and migration were detected by XTT, EdU incorporation, transwell, and wound-healing assays, respectively. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were performed to confirm the direct relationship between miR-361-3p and circ_0068481 or KLF5. RESULTS: Circ_0068481 expression was increased in the serum of PAH patients and hypoxia-induced hPASMCs. Downregulation of circ_0068481 attenuated hypoxia-induced promotion in hPASMC proliferation, invasion, and migration. Circ_0068481 directly targeted miR-361-3p, and miR-361-3p downregulation reversed the inhibitory effects of circ_0068481 silencing on hypoxia-induced hPASMC proliferation, invasion, and migration. KLF5 was a direct miR-361-3p target, and miR-361-3p upregulation mitigated hypoxia-induced hPASMC proliferation, invasion, and migration by inhibiting KLF5 expression. Moreover, circ_0068481-induced KLF5 expression by binding to miR-361-3p in hypoxic hPASMCs. CONCLUSIONS: Circ_0068481 knockdown ameliorated hypoxia-induced hPASMC proliferation, invasion, and migration at least in part through the miR-361-3p/KLF5 axis.


Subject(s)
MicroRNAs , Pulmonary Arterial Hypertension , Humans , Cell Hypoxia/genetics , Cell Proliferation , Familial Primary Pulmonary Hypertension , Hypoxia/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery , Transcription Factors , RNA, Circular/genetics
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013591

ABSTRACT

Aim To study the effect of menthol on hypobaric hypoxia-induced pulmonary arterial hypertension and explore the underlying mechanism in mice. Methods 10 to 12 weeks old wild type (WT) mice and TRPM8 gene knockout (TRPM8

6.
Clin Exp Hypertens ; 46(1): 2297642, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38147409

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling caused by the excessive proliferation and survival of pulmonary artery smooth muscle cells (PASMCs). Dual-specificity tyrosine regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in the regulation of multiple biological functions, including cell proliferation and survival. However, the role and underlying mechanisms of DYRK1A in PAH pathogenesis remain unclear. We found that DYRK1A was upregulated in PASMCs in response to hypoxia, both in vivo and in vitro. Inhibition of DYRK1A by harmine significantly attenuated hypoxia-induced pulmonary hypertension and pulmonary artery remodeling. Mechanistically, we found that DYRK1A promoted pulmonary arterial remodeling by enhancing the proliferation and survival of PASMCs through activating the STAT3/Pim-1/NFAT pathway, because STAT3 gain-of-function via adeno-associated virus serotype 2 (AAV2) carrying the constitutively active form of STAT3 (STAT3C) nearly abolished the protective effect of harmine on PAH. Collectively, our results reveal a significant role for DYRK1A in pulmonary arterial remodeling and suggest it as a drug target with translational potential for the treatment of PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/metabolism , Vascular Remodeling , Harmine/adverse effects , Harmine/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Pulmonary Artery , Hypoxia , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Cells, Cultured , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/pharmacology
7.
Biol Res ; 56(1): 66, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057829

ABSTRACT

BACKGROUND: Abnormal remodeling of the pulmonary vasculature, characterized by the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) along with dysregulated glycolysis, is a pathognomonic feature of pulmonary arterial hypertension (PAH). YULINK (MIOS, Entrez Gene: 54468), a newly identified gene, has been recently shown to possess pleiotropic physiologic functions. This study aims to determine novel roles of YULINK in the regulation of PAH-related pathogenesis, including PASMC migration, proliferation and glycolysis. RESULTS: Our results utilized two PAH-related cell models: PASMCs treated with platelet-derived growth factor (PDGF) and PASMCs harvested from monocrotaline (MCT)-induced PAH rats (PAH-PASMCs). YULINK modulation, either by knockdown or overexpression, was found to influence PASMC migration and proliferation in both models. Additionally, YULINK was implicated in glycolytic processes, impacting glucose uptake, glucose transporter 1 (GLUT1) expression, hexokinase II (HK-2) expression, and pyruvate production in PASMCs. Notably, YULINK and GLUT1 were observed to colocalize on PASMC membranes under PAH-related pathogenic conditions. Indeed, increased YULINK expression was also detected in the pulmonary artery of human PAH specimen. Furthermore, YULINK inhibition led to the suppression of platelet-derived growth factor receptor (PDGFR) and the phosphorylation of focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), and protein kinase B (AKT) in both cell models. These findings suggest that the effects of YULINK are potentially mediated through the PI3K-AKT signaling pathway. CONCLUSIONS: Our findings indicate that YULINK appears to play a crucial role in the migration, proliferation, and glycolysis in PASMCs and therefore positioning it as a novel promising therapeutic target for PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Humans , Animals , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Proto-Oncogene Proteins c-akt/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Phosphatidylinositol 3-Kinases/metabolism , Glucose Transporter Type 1/metabolism , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Glycolysis , Cells, Cultured
8.
Article in English | MEDLINE | ID: mdl-37973667

ABSTRACT

Pulmonary arterial hypertension (PAH) is a malignant cardiovascular disease. Eukaryotic initiation factor 2α (eIF2α) plays an important role in the proliferation of pulmonary artery smooth muscle cells (PASMCs) in hypoxia-induced pulmonary hypertension (HPH) rats. However, the regulatory mechanism of eIF2α remains poorly understood in PAH rats. Here, we discover eIF2α is markedly upregulated in monocrotaline (MCT)-induced PAH rats, eIF2α can be upregulated by mRNA methylation, and upregulated eIF2α can promote PASMC proliferation in MCT-PAH rats. GSK2606414, eIF2α inhibitor, can downregulate the expression of eIF2α and alleviate PASMC proliferation in MCT-PAH rats. And we further discover the mRNA of eIF2α has a common sequence with N 6-methyladenosine (m6A) modification by bioinformatics analysis, and the expression of METTL3, WTAP, and YTHDF1 is upregulated in MCT-PAH rats. These findings suggest a potentially novel mechanism by which eIF2α is upregulated by m6A modification in MCT-PAH rats, which is involved in the pathogenesis of PAH.

9.
Animals (Basel) ; 13(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003068

ABSTRACT

The aim of this study was to investigate the molecular mechanisms by which hypoxia affects the biological behavior of yak PASMCs, the changes in the histological structure of yak and cattle lungs, and the relationships and regulatory roles that exist regarding the differences in the distribution and expression of PDK1 and its hypoxia-associated factors screened for their role in the adaptation of yak lungs to the plateau hypoxic environment. The results showed that, at the level of transcriptome sequencing, the molecular regulatory mechanisms of the HIF-1 signaling pathway, glucose metabolism pathway, and related factors (HK2/PGK1/ENO1/ENO3/ALDOC/ALDOA) may be closely related to the adaptation of yaks to the hypoxic environment of the plateau; at the tissue level, the presence of filled alveoli and semi-filled alveoli, thicker alveolar septa and basement membranes, a large number of erythrocytes, capillary distribution, and collagen fibers accounted for all levels of fine bronchioles in the lungs of yaks as compared to cattle. A higher percentage of goblet cells was found in the fine bronchioles of yaks, and PDK1, HIF-1α, and VEGF were predominantly distributed and expressed in the monolayers of ciliated columnar epithelium in the branches of the terminal fine bronchioles of yak and cattle lungs, with a small amount of it distributed in the alveolar septa; at the molecular level, the differences in PDK1 mRNA relative expression in the lungs of adult yaks and cattle were not significant (p > 0.05), the differences in HIF-1α and VEGF mRNA relative expression were significant (p < 0.05), and the expression of PDK1 and HIF-1α proteins in adult yaks was stronger than that in adult cattle. PDK1 and HIF-1α proteins were more strongly expressed in adult yaks than in adult cattle, and the difference was highly significant (p < 0.01); the relative expression of VEGF proteins was not significantly different between adult yaks and cattle (p > 0.05). The possible regulatory relationship between the above results and the adaptation of yak lungs to the plateau hypoxic environment paves the way for the regulatory mechanisms of PDK1, HIF-1α, and VEGF, and provides basic information for studying the mechanism of hypoxic adaptation of yaks in the plateau. At the same time, it provides a reference for human hypoxia adaptation and a target for the prevention and treatment of plateau diseases in humans and plateau animals.

10.
Cardiovasc Pathol ; 65: 107525, 2023.
Article in English | MEDLINE | ID: mdl-36781068

ABSTRACT

Transmembrane protein 16A (TMEM16A), a member of the TMEM16 family, is the molecular basis of Ca2+-activated chloride channels (CaCCs) and is involved in a variety of physiological and pathological processes. Previous studies have focused more on respiratory-related diseases and tumors. However, recent studies have identified an important role for TMEM16A in cardiovascular diseases, especially in pulmonary hypertension. TMEM16A is expressed in both pulmonary artery smooth muscle cells and pulmonary artery endothelial cells and is involved in the development of pulmonary hypertension. This paper presents the structure and function of TMEM16A, the pathogenesis of pulmonary hypertension, and highlights the role and mechanism of TMEM16A in pulmonary hypertension, summarizing the controversies in this field and taking into account hypertension and portal hypertension, which have similar pathogenesis. It is hoped that the unique role of TMEM16A in pulmonary hypertension will be illustrated and provide ideas for research in this area.


Subject(s)
Hypertension, Pulmonary , Hypertension , Humans , Anoctamin-1 , Endothelial Cells/metabolism , Chloride Channels/genetics , Chloride Channels/chemistry , Chloride Channels/metabolism , Hypertension/pathology
11.
PeerJ ; 10: e14369, 2022.
Article in English | MEDLINE | ID: mdl-36452079

ABSTRACT

Background: Yaks are animals that have lived in plateau environments for generations. Yaks can adapt to the hypoxic plateau environment and also pass this adaptability on to the next generation. The lungs are the most important respiratory organs for mammals to adapt to their environment. Pulmonary artery smooth muscle cells play an important role in vascular remodeling under hypoxia, but the genetic mechanism underpinning the yak's ability to adapt to challenging plateau conditions is still unknown. Methods: A tandem mass tag (TMT) proteomics study together with an RNA-seq transcriptome analysis were carried out on pulmonary artery smooth muscle cells (PASMCs) that had been grown for 72 hours in both normoxic (20% O2) and hypoxic (1% O2) environments. RNA and TP (total protein) were collected from the hypoxic and normoxic groups for RNA-seq transcriptome sequencing and TMT marker protein quantification, and RT-qPCR validation was performed. Results: A total of 17,711 genes and 6,859 proteins were identified. Further, 5,969 differentially expressed genes (DEGs) and 531 differentially expressed proteins (DEPs) were identified in the comparison group, including 2,924 and 186 upregulated genes and proteins and 3,045 and 345 down-regulated genes and proteins, respectively. The transcriptomic and proteomic analyses revealed that 109 DEGs and DEPs were highly positively correlated, with 77 genes showing the same expression trend. Nine overlapping genes were identified in the HIF-1 signaling pathway, glycolysis / gluconeogenesis, central carbon metabolism in cancer, PPAR signaling pathway, AMPK signaling pathway, and cholesterol metabolism (PGAM1, PGK1, TPI1, HMOX1, IGF1R, OLR1, SCD, FABP4 and LDLR), suggesting that these differentially expressed genes and protein functional classifications are related to the hypoxia-adaptive pathways. Overall, our study offers abundant data for further analysis of the molecular mechanisms in yak PASMCs and their adaptability to different oxygen concentrations.


Subject(s)
Proteome , Transcriptome , Animals , Cattle , Transcriptome/genetics , Proteome/genetics , Pulmonary Artery , Proteomics , Hypoxia/genetics , Myocytes, Smooth Muscle , Mammals
12.
Front Physiol ; 13: 1080875, 2022.
Article in English | MEDLINE | ID: mdl-36569761

ABSTRACT

Chronic hypoxia-induced pulmonary hypertension (CHPH) is a severe disease that is characterized by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) leading to pulmonary vascular remodeling. The resulting increase in pulmonary vascular resistance (PVR) causes right ventricular hypertrophy and ultimately right heart failure. In addition, increased PVR can also be a consequence of hypoxic pulmonary vasoconstriction (HPV) under generalized hypoxia. Increased proliferation and migration of PASMCs are often associated with high intracellular Ca2+ concentration. Recent publications suggest that Ca2+-permeable nonselective classical transient receptor potential (TRPC) proteins-especially TRPC1 and 6-are crucially involved in acute and sustained hypoxic responses and the pathogenesis of CHPH. The aim of our study was to investigate whether the simultaneous deletion of TRPC proteins 1, 3 and 6 protects against CHPH-development and affects HPV in mice. We used a mouse model of chronic hypoxia as well as isolated, ventilated and perfused mouse lungs and PASMC cell cultures. Although right ventricular systolic pressure as well as echocardiographically assessed PVR and right ventricular wall thickness (RVWT) were lower in TRPC1, 3, 6-deficient mice, these changes were not related to a decreased degree of pulmonary vascular muscularization and a reduced proliferation of PASMCs. However, both acute and sustained HPV were almost absent in the TRPC1, 3, 6-deficient mice and their vasoconstrictor response upon KCl application was reduced. This was further validated by myographical experiments. Our data revealed that 1) TRPC1, 3, 6-deficient mice are partially protected against development of CHPH, 2) these changes may be caused by diminished HPV and not an altered pulmonary vascular remodeling.

13.
Front Pharmacol ; 13: 977921, 2022.
Article in English | MEDLINE | ID: mdl-36059960

ABSTRACT

Excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) are critical factors leading to vascular remodeling in pulmonary hypertension (PH). This study aimed to explore the effect and potential mechanism of Plumula Nelumbinis on PH by using network pharmacology and experimental analysis. Network pharmacology and molecular docking results indicated that the potential active components of Plumula Nelumbinis against PH were mainly alkaloid compounds, including neferine, liensinine, and isoliensinine. Subsequently, by constructing a Su5416 plus hypoxia (SuHx)-induced PH rat model, we found that the total alkaloids of Plumula Nelumbinis (TAPN) can reduce the right ventricular systolic pressure, delay the process of pulmonary vascular and right ventricular remodeling, and improve the right heart function in PH rats. In addition, TAPN can effectively reverse the upregulation of collagen1, collagen3, MMP2, MMP9, PCNA, PIM1, and p-SRC protein expression in lung tissue of PH rats. Finally, by constructing a hypoxia-induced PASMCs proliferation and migration model, we further found that TAPN, neferine, liensinine, and isoliensinine could inhibit the proliferation and migration of PASMCs induced by hypoxia; reverse the upregulation of collagen1, collagen3, MMP2, MMP9, PCNA, PIM1 and p-SRC protein expression in PASMCs. Based on these observations, we conclude that the alkaloid compounds extracted from Plumula Nelumbinis (such as neferine, liensinine, and isoliensinine) can inhibit the abnormal proliferation and migration of PASMCs by regulating the expression of p-SRC and PIM1, thereby delaying the progression of PH.

14.
ESC Heart Fail ; 9(5): 3407-3417, 2022 10.
Article in English | MEDLINE | ID: mdl-35841124

ABSTRACT

AIMS: Orchestrating the transition from reversible medial hypertrophy to irreversible plexiform lesions is crucial for pulmonary arterial hypertension related to congenital heart disease (CHD-PAH). Transgelin is an actin-binding protein that modulates pulmonary arterial smooth muscle cell (PASMC) dysfunction. In this study, we aimed to probe the molecular mechanism and biological function of transgelin in the pathogenesis of CHD-PAH. METHODS AND RESULTS: Transgelin expression was detected in lung tissues from both CHD-PAH patients and monocrotaline (MCT)-plus aortocaval (AV)-induced PAH rats by immunohistochemistry. In vitro, the effects of transgelin on the proliferation, migration, and apoptosis of human PASMCs (HPASMCs) were evaluated by the cell count and EdU assays, transwell migration assay, and TUNEL assay, respectively. And the effect of transgelin on the expression of HPASMC phenotype markers was assessed by the immunoblotting assay. (i) Compared with the normal control group (n = 12), transgelin expression was significantly overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD-PAH group (n = 4) (reversible group vs. control group: 18.2 ± 5.1 vs. 13.6 ± 2.6%, P < 0.05; irreversible group vs. control group: 29.9 ± 4.7 vs. 13.6 ± 2.6%, P < 0.001; irreversible group vs. reversible group: 29.9 ± 4.7 vs. 18.2 ± 5.1, P < 0.001). This result was further confirmed in MCT-AV-induced PAH rats. Besides, the transgelin expression level was positively correlated with the pathological grading of pulmonary arteries in CHD-PAH patients (r = 0.48, P = 0.03, n = 19). (ii) Compared with the normal control group (n = 12), TGF-ß1 expression was notably overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD-PAH group (n = 4) (reversible group vs. control group: 14.8 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. control group: 20.1 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. reversible group: 20.1 ± 4.4 vs. 14.8 ± 4.4, P < 0.01). The progression-dependent correlation between TGF-ß1 and transgelin was demonstrated in CHD-PAH patients (r = 0.48, P = 0.04, n = 19) and MCT-AV-induced PAH rats, which was further confirmed at sub-cellular levels. (iii) Knockdown of transgelin diminished proliferation, migration, apoptosis resistance, and phenotypic transformation of HPASMCs through repressing the TGF-ß1 signalling pathway. On the contrary, transgelin overexpression resulted in the opposite effects. CONCLUSIONS: These results indicate that transgelin may be an indicator of CHD-PAH development via boosting HPASMC dysfunction through positive regulation of the TGF-ß1 signalling pathway, as well as a potential therapeutic target for the treatment of CHD-PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Humans , Rats , Cell Proliferation/genetics , Hypertension, Pulmonary/etiology , Microfilament Proteins/metabolism , Monocrotaline/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/etiology , Pulmonary Artery , Transforming Growth Factor beta1/metabolism
15.
ESC Heart Fail ; 9(5): 3221-3231, 2022 10.
Article in English | MEDLINE | ID: mdl-35769011

ABSTRACT

AIMS: Although considerable progress has been made in the diagnosis and treatment of congenital heart disease-associated pulmonary heart hypertension (CHD-PAH), the clinical prognosis and overall survival of patients with CHD-PAH remain poor. Therefore, the molecular pathogenesis of CHD-PAH requires further investigation. The intermediate filament protein synemin (SYN) is reported to modulate phenotypic alterations and varicose vein development, but there is little understanding of its exact functions in CHD-PAH. METHODS AND RESULTS: SYN expression in the pulmonary arterioles of CHD-PAH patients and shunt-induced PAH rat models was evaluated using immunohistochemistry and western blot. Cell counts and Transwell migration assays were used to assess the effect of SYN on the proliferation and migration capability of human pulmonary smooth muscle cells (hPASMCs). Adeno-associated viruses (AAVs) have been used to suppress SYN expression in the pulmonary arterioles of rats. Such rats were further used to construct a shunt-induced PAH animal model to investigate the function of SYN in PAH and pulmonary vascular remodelling. Compared with the normal control group, SYN expression was found to be clearly up-regulated in the remodelled pulmonary arterioles of CHD-PAH and shunt-induced PAH rat models. In addition, SYN suppression increased the expression of hPASMC contractile-phenotype markers and decreased the expression of synthetic phenotype markers, in contrast to the control group. SYN suppression also dramatically attenuated the proliferation and migration capability of hPASMCs. Conversely, SYN overexpression promoted phenotypic switch, proliferation, and migration of hPASMCs, whereas these effects were notably alleviated by the protein kinase B (AKT) inhibitor MK-2206. Furthermore, we confirmed that SYN suppression mitigated PAH and pulmonary vascular remodelling induced by high blood flow in vivo. CONCLUSIONS: Our findings indicated that SYN may represent a promising therapeutic target in the treatment of CHD-PAH.


Subject(s)
Heart Defects, Congenital , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Humans , Rats , Hypertension, Pulmonary/etiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/etiology , Pulmonary Artery , Vascular Remodeling
16.
Int J Mol Sci ; 23(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35457254

ABSTRACT

Idiopathic pulmonary arterial hypertension (IPAH) is a progressive vascular disease with high mortality and heritability. Pyroptosis is a novel form of programmed cell death, and it is closely associated with IPAH. However, the roles of pyroptosis-related genes (PRGs) in IPAH are still largely unknown. In this study, we identified KIF23 as the most relevant gene for IPAH and pyroptosis, and its expression was significantly increased in pulmonary arterial smooth muscle cells (PASMCs) of IPAH. Besides, the pyroptosis level of PASMCs was also considerably upregulated in IPAH. Knockdown of KIF23 in PASMCs could significantly suppress the PASMCs' pyroptosis and proliferation and then alleviate the increase in pulmonary arterial pressure, right ventricular hypertrophy, and pulmonary vascular resistance in IPAH. KIF23 regulated the expression of Caspase3, NLRP3, and HMGB1, and they were all involved in the PI3K/AKT and MAPK pathways, indicating that PI3K/AKT and MAPK pathways might participate in regulating PASMCs pyroptosis by KIF23. In conclusion, our study suggests that KIF23 may be a new therapeutic target for IPAH, which can alleviate the symptoms of IPAH by inhibiting the pyroptosis and proliferation of PASMCs.


Subject(s)
Phosphatidylinositol 3-Kinases , Pyroptosis , Cell Proliferation/genetics , Cells, Cultured , Familial Primary Pulmonary Hypertension/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/metabolism , Pyroptosis/genetics
17.
Front Genet ; 13: 810157, 2022.
Article in English | MEDLINE | ID: mdl-35401684

ABSTRACT

Background: Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality, and so far patients have failed to benefit from therapeutics clinically available. Max interacting protein 1-0 (Mxi1-0) is one of the functional isoforms of Mxi1. Although it also binds to Max, Mxi1-0, unlike other Mxi1 isoforms, cannot antagonize the oncoprotein c-Myc because of its unique proline rich domain (PRD). While Mxi1-0 was reported to promote cell proliferation via largely uncharacterized mechanisms, it is unknown whether and how it plays a role in the pathogenesis of HPH. Methods: GEO database was used to screen for genes involved in HPH development, and the candidate players were validated through examination of gene expression in clinical HPH specimens. The effect of candidate gene knockdown or overexpression on cultured pulmonary arterial cells, e.g., pulmonary arterial smooth muscle cells (PASMCs), was then investigated. The signal pathway(s) underlying the regulatory role of the candidate gene in HPH pathogenesis was probed, and the outcome of targeting the aforementioned signaling was evaluated using an HPH rat model. Results: Mxi1 was significantly upregulated in the PASMCs of HPH patients. As the main effector isoform responding to hypoxia, Mxi1-0 functions in HPH to promote PASMCs proliferation. Mechanistically, Mxi1-0 improved the expression of the proto-oncogene c-Myc via activation of the MEK/ERK pathway. Consistently, both a MEK inhibitor, PD98059, and a c-Myc inhibitor, 10058F4, could counteract Mxi1-0-induced PASMCs proliferation. In addition, targeting the MEK/ERK signaling significantly suppressed the development of HPH in rats. Conclusion: Mxi1-0 potentiates HPH pathogenesis through MEK/ERK/c-Myc-mediated proliferation of PASMCs, suggesting its applicability in targeted treatment and prognostic assessment of clinical HPH.

18.
Am J Transl Res ; 14(3): 1578-1591, 2022.
Article in English | MEDLINE | ID: mdl-35422917

ABSTRACT

OBJECTIVES: Regulated in development and DNA damage responses 1 (REDD1) is an important transcription factor regulating mitochondria homeostasis, which is the important pathological alteration of pulmonary hypertension (PH). However, it is unclear whether REDD1 regulates the PASMCs mitochondria homeostasis by the similar mechanism in pulmonary arterial remodeling induced by hypoxia. METHODS: The global REDD1-knockout rats (REDD1-KO) on Sprague-Dawley background were used to generate a chronic hypoxia model of PH. Right ventricular hypertrophy and vascular remodeling were detected after exposure to hypoxia. Additionally, proliferation, apoptosis, migration, mitochondria homeostasis, and autophagy were performed in vivo and in vitro. RESULTS: The current research found that in human and experimental rats of PH, REDD1 expression is upregulated in the PASMCs. REDD1 gene knockout alleviated hypoxia PH and hemodynamic changes effectively and reversed hypoxic pulmonary vascular remodeling. In addition, REDD1 knockdown reduces the impairment of mitochondrial function caused by hypoxia in HPASMCs via autophagy inhibition, and this process may be regulated through the Parkin gene. Moreover, REDD1 knockdown can effectively inhibit the proliferation and migration of hypoxic PASMCs, and induce their apoptosis in vivo and in vitro. CONCLUSIONS: Our results suggested that REDD1 might be a potential target for improved pulmonary vascular remodeling in PH.

19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 543-548, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-37088767

ABSTRACT

OBJECTIVE: To investigate whether probenecid (PROB) could improve the proliferation and migration ability of rats' pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB (PDGF-BB). METHODS: Primary pulmonary artery smooth muscle cells (PASMCs) of SD rats were cultured in vitro, and were randomly divided into control group (CON group), PDGF-BB group (10 ng/ml PDGF-BB treatment for 24 h) and PDGF-BB+PROB group (10 ng/ml PDGF-BB and 200 µmol/L PROB treatment for 24 h, PROB is a specific blocker of pannexin-1). CCK-8 method was used to select the suitable intervention concentrations of PROB and PDGF-BB, and to detect the proliferation of PASMCs in each group. The migration ability of PASMCs was detected by TranswellTM assay and cell scratch test. Immunofluorescence cytochemistry and Western blot were used to detect the protein expressions and distribution of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) in PASMCs. RESULTS: Compared with CON group, the migration and proliferation ability of PASMCs in PDGF-BB group were enhanced (P<0.05). After treated with PROB, the migration and proliferation ability of PASMCs in PDGF-BB+PROB group were decreased significantly (P<0.05). Compared with CON group, the expression and protein levels of OPN and PCNA in PDGF-BB group were increased significantly (P<0.05), while the expression and protein levels of OPN and PCNA in PDGF-BB+PROB were decreased significantly (P<0.05). CONCLUSION: Probenecid inhibits the migration and proliferation of PDGF-BB-induced PASMCs by blocking Pannexin-1.


Subject(s)
Probenecid , Pulmonary Artery , Rats , Animals , Becaplermin/metabolism , Becaplermin/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , Probenecid/pharmacology , Probenecid/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Proto-Oncogene Proteins c-sis/metabolism , Cell Proliferation , Rats, Sprague-Dawley , Myocytes, Smooth Muscle , Cells, Cultured
20.
Clin Exp Hypertens ; 44(2): 175-180, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-34821188

ABSTRACT

Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease.Bone morphogenetic proteins (BMPs) and their receptors were required for PAH-induced right ventricular hypertrophy. Emerging data suggest that restoration of BMP type II receptor (BMPR2) signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. BMPR2 mutations have been identified in >70% of familial and roughly 15% of sporadic PAH cases. Wingless (Wnt) are a family of secreted glycoproteins with varying expression patterns and a range of functions, Wnt signaling pathway is divided into canonical signaling pathway and non-canonical signaling pathway. A recent study reports that interaction between BMP and Wnt closely associated with lung development, those cascade coordination regulation stem cell fate which determine lung branching morphogenes. The promoting effect of BMPR2 on proliferation, survival, and motility of endothelial cells was through recruiting Wnts signaling pathway, the interaction between BMP and Wnt closely associated with lung development.Therefore, in this review, we outline the latest advances of BMP and Wnt signaling pathway in the pathogenesis of PAH and disease progression.


Subject(s)
Bone Morphogenetic Proteins , Pulmonary Arterial Hypertension , Wnt Signaling Pathway , Bone Morphogenetic Proteins/genetics , Endothelial Cells , Humans , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery
SELECTION OF CITATIONS
SEARCH DETAIL
...