ABSTRACT
Sesquiterpenes are a class of metabolites derived from plant species with immunomodulatory activity. In this study, we evaluated the effects of treatment with costic acid on inflammation, angiogenesis, and fibrosis induced by subcutaneous sponge implants in mice. One sponge disc per animal was aseptically implanted in the dorsal region of the mice and treated daily with costic acid (at concentrations of 0.1, 1, and 10 µg diluted in 10 µL of 0.5% DMSO) or 0.5% DMSO (control group). After 9 days of treatment, the animals were euthanized, and the implants collected for further analysis. Treatment with costic acid resulted in the reduction of the inflammatory parameters evaluated compared to the control group, with a decrease in the levels of inflammatory cytokines and chemokines (TNF, CXCL-1, and CCL2) and in the activity of MPO and NAG enzymes. Costic acid administration altered the process of mast cell degranulation. We also observed a reduction in angiogenic parameters, such as a decrease in the number of blood vessels, the hemoglobin content, and the levels of VEGF and FGF cytokines. Finally, when assessing implant-induced fibrogenesis, we observed a reduction in the levels of the pro-fibrogenic cytokine TGF-ß1, and lower collagen deposition. The results of this study demonstrate, for the first time, the anti-inflammatory, anti-angiogenic, and anti-fibrotic effects of costic acid in an in vivo model of chronic inflammation and reinforce the therapeutic potential of costic acid.
Subject(s)
Collagen , Cytokines , Inflammation , Sesquiterpenes , Animals , Mice , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Collagen/metabolism , Inflammation/drug therapy , Cytokines/metabolism , Male , Fibrosis , Porifera , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Neovascularization, Pathologic/drug therapy , AngiogenesisABSTRACT
NEW FINDINGS: What is the central question of this study? Peritoneal injury can result in a persistent fibroproliferative process in the abdominal cavity, causing pain and loss of function of internal organs. This study aimed to demonstrate the use of sodium butyrate (NaBu) as a potential agent to attenuate peritoneal fibrosis induced by a synthetic matrix. What is the main finding and its importance? Our findings provide the first evidence that NaBu attenuates the inflammatory, angiogenesis and fibrogenesis axes involved in the formation of peritoneal fibrovascular tissue, indicating the potential of this compound to ameliorate peritoneal fibrosis. ABSTRACT: The aim of this study was to identify the bio-efficacy of sodium butyrate (NaBu) on preventing the development of peritoneal fibrovascular tissue induced by implantation of a synthetic matrix in the abdominal cavity. Polyether-polyurethane sponge discs were implanted in the peritoneal cavity of mice, which were treated daily with oral administration of NaBu (100 mg/kg). Control animals received water (100 µl). After 7 days, the implants were removed for assessment of inflammatory, angiogenic and fibrogenic markers. Compared with control values, NaBu treatment decreased mast cell recruitment/activation, inflammatory enzyme activities, levels of pro-inflammatory cytokines, and the proteins p65 and p50 of the nuclear factor-κB pathway. Angiogenesis, as determined by haemoglobin content, vascular endothelial growth factor levels and the number of blood vessels in the implant, was reduced by the treatment. In NaBu-treated animals, the predominant collagen present in the abdominal fibrovascular tissue was thin collagen, whereas in control implants it was thick collagen. Transforming growth factor-ß1 levels were also lower in implants of treated animals. Sodium butyrate downregulated the inflammatory, angiogenesis and fibrogenesis axes of the fibroproliferative tissue induced by the intraperitoneal synthetic matrix. This compound has potential to control/regulate chronic inflammation and adverse healing processes in the abdominal cavity.
Subject(s)
Peritoneal Fibrosis , Mice , Animals , Butyric Acid/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Collagen/metabolismABSTRACT
[This corrects the article DOI: 10.3389/fbioe.2020.538203.].
ABSTRACT
The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.
ABSTRACT
Alternagin-C (ALT-C), a disintegrin-like protein obtained from the venom of Bothrops alternatus, is able to modulate cellular behaviors such as adhesion, migration and proliferation, as well as the production of various growth factors via α2ß1 integrin, important processes during inflammation, angiogenesis and fibrogenesis, which although appear as distinct events, act concomitantly in several chronic inflammatory diseases. Our objective was to investigate the effects of ALT-C on components of the sponge-induced inflammatory response in balb/c mice. The polyester-polyurethane sponges were implanted in mice's subcutaneous layer of the dorsal region and daily injected with saline (control group) or ALT-C (10, 100 or 1000â¯ng). Nine days after implantation the implants were removed and processed. ALT-C inhibited the inflammatory response, observed through mast cell reduction, NAG-activity and also by the inhibition of TNF-α, CXCL-1 and CCL2/JE/MCP-1 cytokines. ALT-C was also able to reduce hemoglobin content, number of vessels and the concentrations of VEGF and FGF cytokines. Finally, at its highest dose (1000â¯ng), ALT-C increased all evaluated markers associated with fibrogenesis (collagen production and TGF-ß1 levels). All these factors reveal that ALT-C is a strong candidate to be exploited in the development of anti-inflammatory and anti-angiogenic therapies in chronic inflammatory processes.
Subject(s)
Bothrops/metabolism , Collagen/metabolism , Crotalid Venoms/pharmacology , Disintegrins/pharmacology , Inflammation/drug therapy , Neovascularization, Pathologic/drug therapy , Animals , Hemoglobins/metabolism , Inflammation/metabolism , Male , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/metabolism , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolismABSTRACT
AIMS: Several alternative cellular approaches using biomaterials to host insulin-producing cells derived from stem cells have been developed to overcome the limitations of type 1 diabetes treatment (exogenous insulin injection). However, none seem to fulfill all requirements needed to induce pancreatic cells successful colonization of the scaffolds. Here, we report a polymeric platform adherent to the native mice pancreas filled with human adipose stem cells (hASCs) that was able to induce growth of pancreatic parenchyma. MAIN METHODS: Synthetic polyether-polyurethane discs were placed adjacent to pancreas of normoglycemic and streptozotocin-induced diabetic mice. At day 4 post implantation, 1×106 hASCs were injected intra-implant in groups of normoglycemic and diabetic mice. Immunohistochemistry analysis of the implants was performed to identify insulin positive cells in the newly formed tissue. In addition, metabolic, inflammatory and angiogenic parameters were carried out in those mice. KEY FINDINGS: This study provides evidence of the ability of a biohybrid device to induce the growth of differentiated pancreas parenchyma in both normoglycemic and streptozotocin-induced diabetic mice as detected by histological analysis. Glucose metabolism and body weight of hyperglycemic mice bearing hASCs implants improved. SIGNIFICANCE: The synthetic porous scaffold bearing hASC cells placed adjacent to the native animal pancreas exhibits the potential to be exploited in future cell-based type 1 diabetes therapies.
Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Experimental , Extracellular Matrix/chemistry , Insulin-Secreting Cells/metabolism , Polyurethanes/chemistry , Regeneration , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/therapy , Heterografts , Humans , Insulin-Secreting Cells/pathology , Male , Mice , Stem Cells/pathologyABSTRACT
Recent data has indicated that, besides its classical therapeutic indication in hyperurecemia and gout, xanthine oxidase inhibitors can be used to various forms of ischemia and other types of tissue and vascular injuries. We tested the hypothesis that allopurinol, an inhibitor of xanthine oxidase (XO), might modulate acute and/or chronic inflammatory angiogenesis induced by subcutaneous implantation of synthetic matrix in mice. C57/BL6 male mice (6-7 weeks) were implanted with polyether-polyurethane sponge discs. The animals received by oral gavage 1.0mg/kg of allopurinol for six consecutive days in two treatment regimen. In the first series of experiments, the treatment was initiated 24h post-implantation and the implants were removed at day 7 post-implantation. For the assessment of the effect of the compound on chronic inflammation, the treatment was initiated at day 8 post-implantation and the implants removed 14days post-implantation. Angiogenesis as determined by hemoglobin content, VEGF levels and number of vessels intraimplant, and inflammation (myeloperoxidase -MPO, n-acetyl-ß-d-glucosaminidase -NAG, TNF-α and CCL2 levels) were reduced by allopurinol treatment in acute phase. Similarly, the treatment inhibited nitric oxide and H2O2 production. However, fibrogenesis determined by collagen deposition and levels of TGF-ß1 increased in the implants after allopurinol treatment. In marked contrast with the effects when the treatment initiated 24h post-implantation, allopurinol increased angiogenesis and inflammation but reduced collagen and TGF-ß1 levels intra-implant, when the treatment was started during the chronic inflammatory process. The dual effects of allopurinol described here, extend its range of actions as a potential agent able to modulate the components of the fibrovascular tissue present in both physiological (healing processes) as well as in chronic fibroproliferative diseases. These modulatory effects depended on the phase at which the treatment was initiated.