ABSTRACT
Human amoebiasis still represents a major health problem worldwide. Metronidazole has been used as the most common drug to treat the disease; however, it is also known that the drug causes undesirable side effects. This has led to the search for new pharmacological alternatives which include phytochemical compounds with antiamoebic effects. We analyzed the amoebicidal activity of stevioside (STV), a diterpene glycoside present in Stevia rebaudiana, on trophozoites of E. histolytica. Different concentrations of STV were tested, and an inhibitory concentration of 50% of cell viability (IC50) was determined with an exposition of 9.53 mM for 24 h. Trophozoites exposed to STV showed morphological changes evidenced by the decrease in the basic structures related to the movement and adherence to the substrate, as well as ultrastructural features characterized by a loss of regularity on the cell membrane, an increase in cytoplasmic granularity, and an increase in apparent autophagic vacuoles. Also, the decrease in cysteine protease expression and the proteolytic activity of trophozoites to degrade the cell monolayer were analyzed. A histological analysis of hamster livers inoculated with trophozoites and treated with STV showed changes related to the granulomatous reaction of the liver parenchymal tissue. Our results constitute the first report related to the possible use of STV as a therapeutic alternative in amoebiasis.
ABSTRACT
Abstract Bitter gourd (Momordica charantia L.) fruit is good source of many nutraceutical compounds and possess antioxidant, anti-diabetic and hypoglycaemic activities. However, its utilization in the preparation of beverages is limited due to its bitter after taste. Therefore, to realize the functional and therapeutic benefits of bitter gourd, an attempt was made to optimize nutritious and low caloriebitter gourd based beverage by blending with kiwifruit (Actinidia deliciosa), a store house of bioactive compounds and substituting sugar with stevioside (steviol glycoside). The standard (sugar sweetened) bitter gourd (BG)-kiwifruit (K) blended beverage was developed by utilizing 30% fruit part of BG:K blended juice (80: 20) with 40oB TSS and 1.3% acidity. Further, to develop the low calorie beverage, sucrose (table sugar) was replaced with 25, 50, 75 and 100% equi-sweetness level of stevioside (steviol glycoside). Results revealed that 75% substitution of sucrose with stevioside resulted in shelf stable beverage with identical taste, good antioxidant potential (68.80%) and strong antimicrobial activity (26 mm ZOI) with reduced calorie values (28.5 Kcal/100g) compared to the sugar sweetened control sample (150.60 Kcal/100g). Hence, the developed beverage can be commercialized as low calorie beverage with additional health benefits of natural compounds of bitter gourd and kiwifruit with highest bioactivity.
ABSTRACT
AIMS: Stevioside is a diterpenoid obtained from the leaves of Stevia rebaudiana (Bertoni) that exhibits antioxidant, antifibrotic, antiglycemic and anticancer properties. Therefore, we aimed to study whether stevioside has beneficial effects in liver injury induced by long-term thioacetamide (TAA) administration and investigated the possible underlying molecular mechanism using in vivo, in vitro and in silico approaches. MAIN METHODS: Liver injury was induced in male Wistar rats by TAA administration (200â¯mg/kg), intraperitoneally, three times per week. Rats received saline or stevioside (20â¯mg/kg) twice daily intraperitoneally. In addition, cocultures were incubated with either lipopolysaccharide or ethanol. Liver injury, antioxidant and immunological responses were evaluated. KEY FINDINGS: Chronic TAA administration induced significant liver damage. In addition, TAA upregulated the protein expression of nuclear factor (NF)-κB, thus increasing the expression of proinflammatory cytokines and decreasing the antioxidant capacity of the liver through downregulation of nuclear erythroid factor 2 (Nrf2). Notably, stevioside administration prevented all of these changes. In vitro, stevioside prevented the upregulation of several genes implicated in liver inflammation when cocultured cells were incubated with lipopolysaccharide or ethanol. In silico assays using tumor necrosis factor receptor (TNFR)-1 and Toll-like receptor (TLR)-4-MD2 demonstrated that stevioside docks with TNFR1 and TLR4-MD2, thus promoting an antagonistic action against this proinflammatory mediator. SIGNIFICANCE: Collectively, these data suggest that stevioside prevented liver damage through antioxidant activity by upregulating Nrf2 and immunomodulatory activity by blocking NF-κB signaling.
Subject(s)
Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Diterpenes, Kaurane/pharmacology , Glucosides/pharmacology , Immunologic Factors/pharmacology , Sweetening Agents/pharmacology , Animals , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Computer Simulation , In Vitro Techniques , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Signal Transduction/drug effects , Thioacetamide/toxicityABSTRACT
Liver cirrhosis is associated with increased morbidity and mortality with important health and social consequences; however, an effective treatment has not been found yet. Previous reports have shown some beneficial effects of stevioside (SVT) in different diseases, but the ability of SVT to inhibit liver cirrhosis has not been reported. Therefore, we studied the potential of this diterpenoid to inhibit liver cirrhosis induced by thioacetamide, a model that shares many similarities with the human disease, and investigated the possible underlying molecular mechanism using in vivo and in vitro approaches. Cirrhosis was induced in male Wistar rats by chronic thioacetamide administration (200 mg/kg) intraperitoneally three times per week. Rats received saline or SVT (20 mg/kg) two times daily intraperitoneally. In addition, co-cultures were incubated with either lipopolysaccharide or ethanol. Liver fibrosis, hepatic stellate cells activation, metalloproteinases activity, canonical and non-canonical Smads pathway and expression of several profibrogenic genes were evaluated. Thioacetamide activated hepatic stellate cells and distorted the liver parenchyma with the presence of abundant thick bands of collagen. In addition, thioacetamide up-regulated the protein expression of α-smooth muscle actin, transforming growth factor-ß1, metalloproteinases-9,-2 and -13 and overstimulate the canonical and non-canonical Smad pathways. SVT administration inhibited all of these changes. In vitro, SVT inhibited the up-regulation of several genes implicated in cirrhosis when cells were exposed to lipopolysaccharides or ethanol. We conclude that SVT inhibited liver damage by blocking hepatic stellate cells activation, down-regulating canonical and non-canonical profibrotic Smad pathways.
Subject(s)
Diterpenes, Kaurane/pharmacology , Fibrosis/drug therapy , Fibrosis/metabolism , Glucosides/pharmacology , Liver Cirrhosis/drug therapy , Smad Proteins/metabolism , Actins/metabolism , Animals , Cell Line , Collagen Type I/metabolism , Collagenases , Deoxycytosine Nucleotides , Down-Regulation , Fibrosis/chemically induced , Hepatic Stellate Cells/drug effects , Humans , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Lymphokines/metabolism , MAP Kinase Signaling System/drug effects , Male , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Thioacetamide/toxicity , Transforming Growth Factor beta1/metabolism , Up-RegulationABSTRACT
BACKGROUND: The sweetener and hypoglycemic properties of stevioside (STV) are well known, as the main component of the plant Stevia rebaudiana. Given its extensive use in diabetic patients, it was of interest to evaluate its effects on the most frequent cardiovascular disease, the coronary insufficiency. PURPOSE: To study whether STV could be cardioprotective against ischemia-reperfusion (I/R) in a model of "stunning" in rat hearts. STUDY DESIGN: A preclinical study was performed in isolated hearts from rats in the following groups: non-treated rats whose hearts were perfused with STV 0.3 mg/ml and their controls (C) exposed to either moderate stunning (20 min I/45 min R) or severe stunning (30 min I/45 min R), and a group of rats orally treated with STV 25 mg/kg/day in the drink water during 1 week before the experiment of severe stunning in the isolated hearts were done. METHODS: The mechano-calorimetrical performance of isolated beating hearts was recorded during stabilization period with control Krebs perfusion inside a calorimeter, with or without 0.3 mg/ml STV before the respective period of I/R. The left ventricular maximal developed pressure (P) and total heat rate (Ht) were continuously measured. RESULTS: Both, orally administered and perfused STV improved the post-ischemic contractile recovery (PICR, as % of initial control P) and the total muscle economy (P/Ht) after the severe stunning, but only improved P/Ht in moderate stunning. However, STV increased the diastolic pressure (LVEDP) during I/R in both stunning models. For studying the mechanism of action, ischemic hearts were reperfused with 10 mM caffeine-36 mM Na+-Krebs to induce a contracture dependent on sarcorreticular Ca2+ content, whose relaxation mainly depends on mitochondrial Ca2+ uptake. STV at 0.3 mg/ml increased the area-under-curve of the caffeine-dependent contracture (AUC-LVP). Moreover, at room temperature STV increased the mitochondrial Ca2+ uptake measured by Rhod-2 fluorescence in rat cardiomyocytes, but prevented the [Ca2+]m overload assessed by caffeine-dependent SR release. CONCLUSIONS: Results suggest that STV is cardioprotective against I/R under oral administration or direct perfusion in hearts. The mechanism includes the regulation of the myocardial calcium homeostasis and the energetic during I/R in several sites, mainly reducing mitochondrial Ca2+ overload and increasing the sarcorreticular Ca2+ store.
Subject(s)
Cardiotonic Agents/pharmacology , Diterpenes, Kaurane/pharmacology , Glucosides/pharmacology , Heart/drug effects , Reperfusion Injury/prevention & control , Animals , Calcium/metabolism , Female , Male , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Stevia/chemistryABSTRACT
ABSTRACT Stevia rebaudiana (Bertoni) Bertoni, Asteraceae, leaf extract has recently called the attention of food industry as a proposal for natural sweetener. The sweet flavor is attributed to the glycosides, in especial stevioside and rebaudioside A, which are the plant main chemical markers. The aim of the work reported here was to optimize the turbo-extraction of stevia leaves using water, ethanol 70% and 90% (w/w) as green solvents. A 25-2 factorial design was applied to study the linear effects of the drug size, solvent to drug ratio, temperature, time and also the turbolysis speed on the extraction of glycosides. The glycosides exhaustive extraction showed that ethanol 70% gave better results and was used for turbo-extraction. The stevioside and rebaudioside A contents were quantified by a validated method by high performance liquid chromatographic with photodiode array detector. The contents of stevioside and rebaudioside A in fluid extract increased with the drug size, but decreased at high shearing speeds and solvent to drug ratio, while their yields decreased at higher temperature and were not affected by turbo speed. An increase in solvent to drug ratio reduced significantly the glycosides percent in dried extract. Optimal solution for S. rebaudiana leaves turbo-extraction was determined by desirability functions. The optimal extraction condition corresponded to drug size of 780 µm, solvent to drug ratio of 10, extraction time of 18 min; temperature of 23 ºC and turbo speed of 20,000 rpm, resulting in yields of 4.98% and 2.70%, for stevioside and rebaudioside A, respectively. These yields are comparable to the ones recently published for dynamic maceration, but with the advantage of shorter extraction times. This work demonstrates that turbolysis is promising for S. rebaudiana glycosides extraction and stimulate new research on the purification of these extracts, which may become an interesting source of income for developing countries such as India and Brazil.
ABSTRACT
Las hojas de Stevia rebaudiana son fuente de esteviosidos y rebaudiosidos, sustancias endulzantes con bajo contenido calórico. La propagación sexual y clonal de estevia es difícil debido a la calidad de la semilla y el tamaño reducido de la planta. Para evaluar la multiplicación, brotes establecidos in vitro fueron cultivados en ½ MS con cinco concentraciones de BAP (0.0, 2.22, 4.44, 8.88 y 17.6 µM). Posteriormente, los tallos multiplicados se subcultivaron en presencia de cinco concentraciones de ANA (0.0, 2.69, 5.37, 10.74 de 21.48 µM) para evaluar enraizamiento. Finalmente, tallos multiplicados sin enraizar, tratados o no con 0.4% de ANA, y otros enraizados in vitro fueron transferidos a condiciones ex vitro. Todos los experimentos fueron distribuidos usando un DCA. Los resultados indicaron que el medio 1/2MS adicionado con BAP indujo una mayor tasa de multiplicación. 10.74 µM de ANA indujo el mejor enraizamiento; sin embargo, los tallos sin enraizamiento resultaron en la mayor supervivencia ex vitro.
Stevia rebaudiana Bertoni leaves are source of stevioside and rebaudioside, non-caloric sweetener substances. Seed and cutting estevia propagation is difficult due to seed sterility and small size plant, respectively. To evaluate shoot proliferation, in vitro-established estevia shoots were cultured in ½ MS with five (0.0, 2.22, 4.44, 8.88 and 17.6 µM) BAP levels. Thereafter, proliferated shoots were cultured on ½ MS with five NAA levels (0.0, 2.69, 5.37, 10.74 and 21.48 µM) to evaluate shoot rooting. Finally, non-rooted shoots, in vitro-rooted shoots and non-rooted shoots treated with a 0.4% NAA powder were transferred to ex vitro conditions. All experiments were distributed using a complete randomized design. The data indicated that BAP treated shoots showed a higher rate of shoot proliferation. An 87% of rooting and higher number of roots per explant was achieved with 10.74 µM of NAA. Non-rooted shoots transferred directly from Stage II showed the best survival rate.
Subject(s)
Plants , SteviaABSTRACT
Stevia rebaudiana Bertoni, an ancient perennial shrub of South America, produces diterpene glycosides that are low calorie sweeteners, about 300 times sweeter than saccharose. Stevia extracts, besides having therapeutic properties, contain a high level of sweetening compounds, known as steviol glycosides, which are thought to possess antioxidant, antimicrobial and antifungal activity. Stevioside and rebaudioside A are the main sweetening compounds of interest. They are thermostable even at temperatures of up to 200°C, making them suitable for use in cooked foods. S. rebaudiana has a great potential as a new agricultural crop since consumer demand for herbal foods is increasing and proximate analysis has shown that Stevia also contains folic acid, vitamin C and all of the indispensable amino acids with the exception of tryptophan. Stevia cultivation and production would further help those who have to restrict carbohydrate intake in their diet; to enjoy the sweet taste with minimal calories.
ABSTRACT
Stevia rebaudiana Bertoni (kaâ heê) es un arbusto originario de la Región Oriental de Paraguay. Sus hojas contienen glucósidos diterpénicos que producen un sabor dulce, perosin valor calórico y son de 150 a 300 veces más dulces que la sacarosa (solución al 0,4%). Durante las temporadas agrícolas 1998 y 1999 se establecieron sembrados deselección individual, en el Instituto Agronómico Nacional (Caacupé, Paraguay). El objetivo de este trabajo fue determinar el contenido de esteviósido y rebaudiósido A en plantasseleccionadas en campo a fin de evaluar la variabilidad existente en la población e identificar clones con alto contenido de dichos glucósidos. De una población original de 2000 individuos, se seleccionaron fenotípicamente 140 plantas por características agronómicas superiores y se cosecharon en etapa de prefloración y libres de polinización.En los Laboratorios del Instituto Nacional de Tecnología Normalización y Metrología (INTN) fueron evaluados los contenidos de esteviósido y rebaudiósido A por detección por cromatografía liquida de alta resolución. El contenido de esteviósido fluctuó entre 0 y 21 % concentrándose el 92 % de la población entre valores del 5 al 15 % .En cuanto al contenido de rebaudiósido A se obtuvieron valores entre 0 y 12 % correspondiendo al 68% de la población un contenido entre 3 y 9 %. La demanda actual de stevia se halla en creciente aumento, por lo que las acciones orientadas a establecer líneas clonales con alto contenido de principios edulcorantes permitirá a los productores primarios la obtención decultivos más productivos e incrementara el rendimiento de obtención de glucósidos.
Stevia rebaudiana Bertoni (kaâ heê) is a bush native to the Eastern Region of Paraguay. Its leaves contain diterpene glycosides that produce a sweet taste but without any caloric value and are 150 to 300 times sweeter than sacharose (0, 4% solution). During 1998 and 1999 agricultural seasons, individual selection sown fields were established in the National Agronomical Institute (Caacupé, Paraguay). The objective of this work was todetermine the content of stevioside and rebaudioside A in these selected plants in the field in order to evaluate the variability existent in the population and identify clones with high content of those glycosides. Of an original population of 2,000 specimens, 140 plants were selected phenotipically by the superior agronomical characteristics and they were harvested in the period of pre-flowering and were pollination free. The content of stevioside and rebaudioside A were evaluated in the laboratories of the National Instituteof Technology, Standardization and Metrology (INTN in Spanish) by high resolution liquid chromatography. The content of stevioside ranged from 0 to 21% concentrating the 92% of the population between 5 to 15%. In relation to rebaudioside A, values between 0 and 12% were obtained being 68% of the population between a content of 3 to 9%. As the current demand of Stevia is increasingly rising, the actions oriented to establish clonallines with high content of sweetener principles will allow primary producers to obtain more productive cultivations and increase the output of glycoside obtainment.
Subject(s)
Medicine, Traditional , Plants, Medicinal , SteviaABSTRACT
A comparative study on the potential of some biological agents to perform the hydrolysis of stevioside was carried out, aiming at establishing an alternative methodology to achieve the aglycon steviol or its rearranged derivative isosteviol, in high yields to be used in the preparation of novel bioactive compounds. Hydrolysis reactions were performed by using filamentous fungi (Aspergillus niger, Rhizopus stolonifer and Rhizopus arrhizus), a yeast (Saccharomyces cerevisiae) and enzymes (pancreatin and lipases PL250 and VFL 8000). Pancreatin showed the best hydrolytic activity, furnishing isosteviol at 93.9% of yield, at pH 4.0, using toluene as a co-solvent. Steviol was produced using both pancreatin at pH 7.0 (20.2% yield) and A. niger atpH 7 (20.8% yield).
Um estudo comparativo do potencial de alguns agentes biológicos capazes de hidrolisar o esteviosídeo foi realizado,objetivando-se estabelecer uma metodologia alternativa para a obtenção da aglicona esteviol ou seu produto de rearranjo, isoesteviol, em rendimentos elevados que permitam o uso destas agliconas para o preparo de novos compostos bioativos. As reações de hidrólise foram realizadas usando fungosfilamentosos (Aspergillus niger, Rhizopus stolonifer e Rhizopus arrhizus), uma levedura (Saccharomyces cerevisiae) e enzimas(pancreatina, lipase PL250 e lipase VFL 8000). A pancreatina mostrou a melhor atividade hidrolítica dentre os sistemastestados, fornecendo isoesteviol com rendimento de 93,9% em pH 4,0, usando tolueno como co-solvente. Esteviol foi produzido tanto usando pancreatina em pH 7,0 (20,2% derendimento) quanto usando A. niger em pH 7,0 (20,8% de rendimento).
Subject(s)
Biological Reactions , Fungi/enzymology , Fungi/isolation & purification , Lipase/analysis , Pancreatin/analysis , Stevia/enzymology , Chromatography, High Pressure Liquid , Hydrolysis , Methods , MethodsABSTRACT
A comparative study on the potential of some biological agents to perform the hydrolysis of stevioside was carried out, aiming at establishing an alternative methodology to achieve the aglycon steviol or its rearranged derivative isosteviol, in high yields to be used in the preparation of novel bioactive compounds. Hydrolysis reactions were performed by using filamentous fungi (Aspergillus niger, Rhizopus stolonifer and Rhizopus arrhizus), a yeast (Saccharomyces cerevisiae) and enzymes (pancreatin and lipases PL250 and VFL 8000). Pancreatin showed the best hydrolytic activity, furnishing isosteviol at 93.9% of yield, at pH 4.0, using toluene as a co-solvent. Steviol was produced using both pancreatin at pH 7.0 (20.2% yield) and A. niger at pH 7 (20.8% yield).
ABSTRACT
A comparative study on the potential of some biological agents to perform the hydrolysis of stevioside was carried out, aiming at establishing an alternative methodology to achieve the aglycon steviol or its rearranged derivative isosteviol, in high yields to be used in the preparation of novel bioactive compounds. Hydrolysis reactions were performed by using filamentous fungi (Aspergillus niger, Rhizopus stolonifer and Rhizopus arrhizus), a yeast (Saccharomyces cerevisiae)andenzymes (pancreatin and lipases PL250 and VFL 8000). Pancreatin showed the best hydrolytic activity, furnishing isosteviol at 93.9% of yield, at pH 4.0, using toluene as a co-solvent. Steviol was produced using both pancreatin at pH 7.0 (20.2% yield) and A. niger at pH 7 (20.8% yield).
Um estudo comparativo do potencial de alguns agentes biológicos capazes de hidrolisar o esteviosídeo foi realizado, objetivando-se estabelecer uma metodologia alternativa para a obtenção da aglicona esteviol ou seu produto de rearranjo, isoesteviol, em rendimentos elevados que permitam o uso destas agliconas para o preparo de novos compostos bioativos. As reações de hidrólise foram realizadas usando fungos filamentosos (Aspergillus niger, Rhizopus stolonifer e Rhizopus arrhizus), uma levedura (Saccharomyces cerevisiae)e enzimas(pancreatina, lipase PL250 e lipase VFL 8000). A pancreatina mostrou a melhor atividade hidrolítica dentre os sistemas testados, fornecendo isoesteviol com rendimento de 93,9% em pH 4,0, usando tolueno como co-solvente. Esteviol foi produzido tanto usando pancreatina em pH 7,0 (20,2% de rendimento) quanto usando A. niger em pH 7,0 (20,8% de rendimento).