Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add more filters











Publication year range
1.
Small ; : e2404927, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39252634

ABSTRACT

Heterostructures of layered double hydroxides (LDHs) and MXenes have shown great promise for oxygen evolution reaction (OER) catalysts, owing to their complementary physical properties. Coupling LDHs with MXenes can potentially enhance their conductivity, stability, and OER activity. In this work, a scalable and straightforward in situ guided growth of CoFeLDH on Ti3C2Tx is introduced, where the surface chemistry of Ti3C2Tx dominates the resulting heterostructures, allowing tunable crystal domain sizes of LDHs. Combined simulation results of Monte Carlo and density functional theory (DFT) validate this guided growth mechanism. Through this way, the optimized heterostructures allow the highest OER activity of the overpotential = 301 mV and Tafel slope = 43 mV dec-1 at 10 mA cm-2, and a considerably durable stability of 0.1% decay over 200 h use, remarkably outperforming all reported LDHs-MXenes materials. DFT calculations indicate that the charge transfer in heterostructures can decrease the rate-limiting energy barrier for OER, facilitating OER activity. The combined experimental and theoretical efforts identify the participation role of MXene in heterostructures for OER reactions, providing insights into designing advanced heterostructures for robust OER electrocatalysis.

2.
Small ; : e2406397, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223859

ABSTRACT

Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.

3.
ACS Appl Mater Interfaces ; 16(37): 49687-49700, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39231313

ABSTRACT

The optimization of electromagnetic microwave absorbing (EMA) materials for radar stealth has been a continuous endeavor. However, meeting the defense requirements across multiple-frequency bands in increasingly complex and variable environments remains challenging. Drawing inspiration from the cytoskeleton-organelle structure, we designed and prepared a hierarchical MXene/NiFe2O4/calcined melamine foam (MNC) composite. The composite exhibits efficient and adjustable microwave absorption, infrared stealth, and solar absorption performance through the synergistic interaction of the components and the spatial effect of its novel microstructure. The composite achieves a minimum reflection loss of -58.57 dB and an effective absorption bandwidth (EAB) of 7.00 GHz, both of which can vary with the thickness. MNC also offers stable infrared stealth performance for heat sources ranging from 37 to 300 °C and high solar absorptivity up to 96.2%, promoting ambient-temperature-adaptive infrared stealth through electricity-sunlight cooperative regulation. With exceptional environmental adaptability characteristics such as photothermal conversion, lightness, elasticity, and hydrophobicity, the MNC composite holds promise as a multispectrum defense material for radar, infrared, and visible light for various forms of equipment, clothing, and wearables in harsh conditions.

4.
Angew Chem Int Ed Engl ; : e202413728, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276037

ABSTRACT

Additive manufacturing of (quasi-) solid-state (QSS) electrochemical energy storage devices (EES) highlights the significance of gel polymer electrolytes (GPEs) design. Creating well-bonded electrode-GPEs interfaces in the electrode percolative network via printing leads to large-scale production of customized EES with boosted electrochemical performance but has proven to be quite challenging. Herein, we report on a versatile, universal and scalable approach to engineer a controllable, seamless electrode-GPEs interface via free radical polymerization (FRP) triggered by MXene at room temperature. Importantly, MXene reduces the dissociation enthalpy of persulfate initiators and significantly shortens the induction period accelerated by SO- 4·, enabling the completion of FRP within minutes. The as-formed well-bonded electrode-GPEs interface homogenizes the electrical and concentration fields (i.e., Zn2+), therefore suppressing the dendrites formation, which translates to long-term cycling (50,000 times), high energy density (105.5 Wh kg-1) and power density (9231 W kg-1) coupled with excellent stability upon deformation in the zinc-ion hybrid capacitors (ZHCs). Moreover, the critical switch of the rheological behaviours of the polymer electrolyte (as aqueous inks in still state and become solids once triggered by MXene) perfectly ensures the direct all-printing of electrodes and GPEs with well-bonded interface in between, opening vast possibilities for all-printed QSS EES beyond ZHCs.

5.
ACS Appl Mater Interfaces ; 16(33): 44067-44076, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39133189

ABSTRACT

Photothermal responsive hydrogels are widely used in bionic soft actuators due to their remote-controlled capabilities and flexibility. However, their weak mechanical properties and limited responsiveness hinder their potential applications. To overcome this, we developed an innovative laponite/MXene/PNIPAm (LxMyPN) nanocomposite hydrogel that is mechanically robust and exhibits excellent photothermally responsive properties based on abundant hydrogen bonds. Notably, laponite clay is used as a co-cross-linking agent to improve the mechanical properties of LxMyPN hydrogel, while MXene nanosheets are added to promote the photothermal responsiveness. The resulting L3M0.4PN nanocomposite hydrogel exhibits enhanced mechanical properties, with a compressive strength of 0.201 MPa, a tensile strength of 90 kPa, and a fracture toughness of 27.25 kJ m-2. In addition, the L3M0.4PN hydrogel displays a deswelling ratio of 73.6% within 60 s and experiences an excellent volume shrinkage of 82.4% under light irradiation. Furthermore, hydrogel actuators with fast response behaviors are constructed and employed as grippers capable of grasping and releasing target objects. Overall, this high-strength and fast-responsive hydrogel actuator is beneficial to paving the way for remote controlled soft robots.

6.
Food Chem ; 461: 140828, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39151347

ABSTRACT

A refined electrochemical aptamer sensing technique using PEI@Ti-MOF@Ti3C2Tx-MXene was developed for the sensitive detection of ZEN in food samples. A titanium-based metal-organic skeleton (NH2-MIL-125) was synthesized in situ using 2-aminoterephthalic acid as the organic ligand and tetrabutyl titanate as the metal center, followed by the simultaneous hybridization of Ti3C2Tx-MXene to synthesize a Ti-MOF@Ti3C2Tx-MXene composite material. These composites were subsequently functionalized with PEI and covalently linked to form a sensing platform on gold electrodes. Integrating a metal-organic framework (MOF) with MXene materials not only improved the electrochemical properties compared to those of individual elements but also decreased the stacking effect and increased the number of binding sites for the aptamer. The limit of detection (LOD) of this sensor was 1.64 fg mL-1. Additionally, the sensor could efficaciously detect ZEN in cornmeal and beer samples, exhibiting outstanding stability, reproducibility, and selectivity. This highlighted its effectiveness in applications in quality supervision and food safety.


Subject(s)
Aptamers, Nucleotide , Beer , Electrochemical Techniques , Food Contamination , Limit of Detection , Metal-Organic Frameworks , Titanium , Zearalenone , Titanium/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Aptamers, Nucleotide/chemistry , Zearalenone/analysis , Metal-Organic Frameworks/chemistry , Food Contamination/analysis , Beer/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Zea mays/chemistry
7.
Environ Sci Pollut Res Int ; 31(40): 53329-53347, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39186207

ABSTRACT

Nanostructure titanium carbide MXene (Ti3C2Tx) was modified with KH2PO4 and chitosan to effectively remove strontium from nuclear wastewater. Nuclear waste includes radionuclides of uranium, thorium, strontium, and cesium, which are classified depending on the concentration of radionuclides. Nuclear waste with a high strontium concentration is the production waste of radiopharmaceutical production centers. Ti3C2Tx was synthesized from Ti3AlC2 using HF40% and HF in situ (MILD-Ti3C2Tx) in 24 h at 313.15 and 333.15 K. Morphology, structure, and functional groups were investigated using the XRD, SEM, EDS, FTIR, and BET analyses. The Sr(II)'s adsorption capacity on Ti3C2Tx-HF and Ti3C2Tx-HF in situ was obtained as 61.9 and 253.5 mg g-1, respectively (temperature, 298.15 K; pH, 7.00; contact time, 180 min; and Sr(II) concentration, 150 mg l-1). Ti3C2Tx-HF in situ showed fourfold adsorption due to more hydroxyl functional groups and larger interlayer spacing. Ti3C2Tx was modified with KH2PO4 and chitosan to investigate the mechanism of change of Sr(II)'s adsorption capacity, which increased to 370 and 284 mg g-1, respectively. The structural results of modified Ti3C2Tx showed that the surface functional groups increased when modified with chitosan. In addition, modification with KH2PO4, through encapsulating large amounts of KH2PO4 between Ti3C2Tx layers, increased the possibility of Sr(II) diffusion between layers and electrochemical interactions with hydroxyl groups, and thus, increased its adsorption. Some experiments were designed to investigate the effect of parameters like initial concentration of Sr(II), contact time, temperature, and pH solution, as well as modified- and unmodified-Ti3C2Tx on adsorbent. The results revealed that the adsorption process of Sr(II) with pristine and modified-Ti3C2Tx follows pseudo-second-order kinetics and Freundlich heterogeneous isotherm model. Freundlich model isotherm indicates the presence of various functional groups on the surface and between the pristine and modified Ti3C2Tx layers. Electrostatic reactions and intra-sphere complexation were the two dominant mechanisms of the adsorption process.


Subject(s)
Chitosan , Nanostructures , Strontium , Chitosan/chemistry , Strontium/chemistry , Adsorption , Nanostructures/chemistry , Titanium/chemistry , Radioactive Waste
8.
ACS Appl Mater Interfaces ; 16(32): 42007-42020, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088748

ABSTRACT

The distinctive properties of 2D MXenes have garnered significant interest across various fields, including wastewater treatment and photo/electro-catalysis. The integration of inexpensive semiconductor nanostructures with 2D MXenes offers a promising strategy for applications such as wastewater treatment and photoelectrochemical hydrogen production. In this study, we employed an in situ hydrothermal method to immobilize 1D Bi2S3 nanorods and self-reduced metallic bismuth nanoparticles (Bi NPs) onto Ti3C2Tx MXene nanosheets, resulting in the formation of a Bi/Bi2S3/Ti3C2Tx (0D/1D/2D) composite catalyst, which demonstrates an outstanding efficacy in both the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and photoelectrochemical hydrogen production. Remarkably, a 4-NP reduction efficiency of 100% was achieved only in 4 min with a reduction rate of 1.14 min-1, which is outstanding, and it is ∼3.8 times faster than pristine Bi2S3 nanorods (0.3 min-1). Furthermore, the photoelectrochemical assessment reveals that the Bi/Bi2S3/Ti3C2Tx catalyst displays remarkable hydrogen evolution reaction (HER) efficiency in an alkaline electrolyte. It exhibits a significantly lower overpotential and Tafel slope of 73 mV and 84 mV/dec, respectively, compared to pristine Bi2S3 nanorods, which are found to be 129 mV and 145 mV/dec under light illumination. The superior reduction performance of 4-NP and charge transfer mechanism is further investigated through density functional theory (DFT) calculations, alongside validation using various microscopic and spectroscopic techniques. Interestingly, the DFT analysis revealed modifications in the partial density of states of Bi2S3 within the band gap region due to the successful anchoring of Ti3C2Tx nanosheets and metallic Bi NPs, facilitating efficient charge transport and separation across the local junctions. Ultraviolet photoelectron spectroscopy provided insights into band alignment and interfacial charge transfer across the Bi/Bi2S3/Ti3C2Tx junction on a microscopic scale. This work is significant for the development of MXene-based hybrid catalysts, and it provides a deeper understanding of the reduction mechanism of organic pollutants and superior charge transport in the hybrid system for photoelectrochemical hydrogen production.

9.
Angew Chem Int Ed Engl ; : e202414984, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147723

ABSTRACT

Osmotic energy from the ocean has been thoroughly studied, but that from saline-alkali lakes is constrained by the ion-exchange membranes due to the trade-off between permeability and selectivity, stemming from the unfavorable structure of nanoconfined channels, pH tolerance, and chemical stability of the membranes. Inspired by the rapid water transport in xylem conduit structures, we propose a horizontal transport MXene (H-MXene) with ionic sequential transport nanochannels, designed to endure extreme saline-alkali conditions while enhancing ion selectivity and permeability. The H-MXene demonstrates superior ion conductivity of 20.67 S m-1 in 1 M NaCl solution and a diffusion current density of 308 A m-2 at a 10-fold salinity gradient of NaCl solution, significantly outperforming the conventional vertical transport MXene (V-MXene). Both experimental and simulation studies have confirmed that H-MXene represents a novel approach to circumventing the permeability-selectivity trade-off. Moreover, it exhibits efficient ion transport capabilities, addressing the gap in saline-alkali osmotic power generation.

10.
Nano Lett ; 24(33): 10297-10304, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39133240

ABSTRACT

In this paper, Ti3C2Tx MXene/Cu-Bi bimetallic sulfide (Ti3C2Tx/BiCuS2.5) composites were prepared by a simple in situ deposition method for electrocatalytic nitrogen reduction reaction (eNRR). Compared to Ti3C2Tx/Bi2S3 and Ti3C2Tx/CuS, the eNRR performance of Ti3C2Tx/BiCuS2.5 is significantly improved. The results show that Ti3C2Tx/BiCuS2.5 exhibits a NH3 yield of 62.57 µg h-1 mg-1cat. in 0.1 M Na2SO4 at -0.6 V vs reversible hydrogen electrode, and the Faradaic efficiency (FE) reaches 67.69%, which is better than that of Ti3C2Tx/CuS (NH3 yield: 52.26 µg h-1 mg-1cat., FE: 34.15%) and Ti3C2Tx/Bi2S3 (NH3 yield: 54.04 µg h-1 mg-1cat., FE: 37.38%). According to density functional theory calculations, the eNRR at the Ti3C2Tx/BiCuS2.5 surface is the alternating pathway. The 1H NMR experiment of 15N proves that the N of NH3 generated in the experiment originates from N2 passed during the experiment.

11.
ACS Appl Mater Interfaces ; 16(36): 48147-48162, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39190871

ABSTRACT

Two-dimensional (2D) transition metal carbides (Ti3C2Tx MXene) have demonstrated substantial application potential across various fields, owing to their excellent metallic conductivity and solution processability. However, the rapid oxidation of Ti3C2Tx in aqueous environments, leading to a loss of stability within mere days, poses a significant obstacle for its practical applications. Herein, we introduce an antioxidant strategy that combines free radical scavenging with surface passivation, culminating in the design and synthesis of imidazolium-based ionic liquids (ILs) incorporating siloxane groups. By deploying a straightforward hydrolysis-addition reaction, we successfully fabricated IL-modified Ti3C2Tx materials (Ti3C2Tx-IL). The Ti3C2Tx -IL not only displayed exceptional conductivity exceeding 3.85 × 104 S/m and hydrophilic contact angles below 45° but also showcased its superior chemical stability and antioxidation mechanisms through various analyses, including visual color change experiments, spectroscopic and energy spectrum characterization, free radical scavenging tests, and density-functional-theory-based molecular simulations. Furthermore, when utilized as a conductive filler in the fabrication of a poly(vinyl alcohol)/nanocellulose fiber (PVA/CNF) composite hydrogel (PCMIL), the resultant sensors exhibited remarkable mechanical performance with up to 535% strain, 1.59 MPa strength, 4.35 MJ/m3 toughness, and a conductivity of 3.40 mS/cm, as well as a high sensitivity gauge factor of 3.3. Importantly, even after 45 days of storage, the PCMIL retained most of its functionalities, demonstrating superior performance in human-machine interaction applications compared to hydrogels made from unmodified Ti3C2Tx. This research establishes a robust antioxidant protection strategy for Ti3C2Tx, offering substantial technical reinforcement for its prospective applications in the realm of flexible electronics and sensing technologies.

12.
Adv Sci (Weinh) ; 11(35): e2405374, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013112

ABSTRACT

This study delves into the development of a novel 10 by 10 sensor array featuring 100 pressure sensor pixels, achieving remarkable sensitivity up to 888.79 kPa-1, through the innovative design of sensor structure. The critical challenge of strain sensitivity inherent is addressed in stretchable piezoresistive pressure sensors, a domain that has seen significant interest due to their potential for practical applications. This approach involves synthesizing and electrospinning polybutadiene-urethane (PBU), a reversible cross-linking polymer, subsequently coated with MXene nanosheets to create a conductive fabric. This fabrication technique strategically enhances sensor sensitivity by minimizing initial current values and incorporating semi-cylindrical electrodes with Ag nanowires (AgNWs) selectively coated for optimal conductivity. The application of a pre-strain method to electrode construction ensures strain immunity, preserving the sensor's electrical properties under expansion. The sensor array demonstrated remarkable sensitivity by consistently detecting even subtle airflow from an air gun in a wind sensing test, while a novel deep learning methodology significantly enhanced the long-term sensing accuracy of polymer-based stretchable mechanical sensors, marking a major advancement in sensor technology. This research presents a significant step forward in enhancing the reliability and performance of stretchable piezoresistive pressure sensors, offering a comprehensive solution to their current limitations.

13.
ACS Appl Mater Interfaces ; 16(28): 36962-36972, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959083

ABSTRACT

Aerogel-based composites, renowned for their three-dimensional (3D) network architecture, are gaining increasing attention as lightweight electromagnetic (EM) wave absorbers. However, attaining high reflection loss, broad effective absorption bandwidth (EAB), and ultrathin thickness concurrently presents a formidable challenge, owing to the stringent demands for precise structural regulation and incorporation of magnetic/dielectric multicomponents with synergistic loss mechanisms within the 3D networks. In this study, we successfully synthesized a 3D hierarchical porous Fe3O4/MoS2/rGO/Ti3C2Tx MXene (FMGM) composite aerogel via directional freezing and subsequent heat treatment processes. Owing to their ingenious structure and multicomponent design, the FMGM aerogels, featured with abundant heterogeneous interface structure and magnetic/dielectric synergism, show exceptional impedance matching characteristics and diverse EM wave absorption mechanisms. After optimization, the prepared ultralight (6.4 mg cm-3) FMGM-2 aerogel exhibits outstanding EM wave absorption performance, achieving a minimal reflection loss of -66.92 dB at a thickness of 3.61 mm and an EAB of 6.08 GHz corresponding to the thickness of 2.3 mm, outperforming most of the previously reported aerogel-based absorbing materials. This research presents an effective strategy for fabricating lightweight, ultrathin, highly efficient, and broad band EM wave absorption materials.

14.
Small ; : e2403518, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016114

ABSTRACT

2D Ti3C2Tx MXene-based film electrodes with metallic conductivity and high pseudo-capacitance are of considerable interest in cutting-edge research of capacitive deionization (CDI). Further advancement in practical use is however impeded by their intrinsic limitations, e.g., tortuous ion diffusion pathway of layered stacking, vulnerable chemical stability, and swelling-prone nature of hydrophilic MXene nanosheet in aqueous environment. Herein, a nanoporous 2D/2D heterostructure strategy is established to leverage both merits of holey MXene (HMX) and holey graphene oxide (HGO) nanosheets, which optimize ion transport shortcuts, alleviate common restacking issues, and improve film's mechanical and chemical stability. In this design, the nanosized in-plane holes in both handpicked building blocks build up ion diffusion shortcuts in the composite laminates to accelerate the transport and storage of ions. As a direct outcome, the HMX/rHGO films exhibit remarkable desalination capacity of 57.91 mg g-1 and long-term stability in 500 mg L-1 NaCl solution at 1.2 V. Moreover, molecular dynamics simulations and ex situ wide angle X-ray scattering jointly demonstrate that the conductive 2D/2D networks and ultra-short ion diffusion channels play critical roles in the ion intercalation/deintercalation process of HMX/rHGO films. The study paves an alternative design concept of freestanding CDI electrodes with superior ion transport efficiency.

15.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999007

ABSTRACT

Due to their cost-effectiveness, abundant resources, and suitable working potential, sodium-ion batteries are anticipated to establish themselves as a leading technology in the realm of grid energy storage. However, sodium-ion batteries still encounter challenges, including issues related to low energy density and constrained cycling performance. In this study, a self-supported electrode composed of Prussian white/KetjenBlack/MXene (TK-PW) is proposed. In the TK-PW electrode, the MXene layer is coated with Prussian white nanoparticles and KetjenBlack with high conductivity, which is conducive to rapid Na+ dynamics and effectively alleviates the expansion of the electrode. Notably, the electrode preparation method is uncomplicated and economically efficient, enabling large-scale production. Electrochemical testing demonstrates that the TK-PW electrode retains 74.9% of capacity after 200 cycles, with a discharge capacity of 69.7 mAh·g-1 at 1000 mA·g-1. Furthermore, a full cell is constructed, employing a hard carbon anode and TK-PW cathode to validate the practical application potential of the TK-PW electrode.

16.
Sensors (Basel) ; 24(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39065863

ABSTRACT

Ammonia (NH3) potentially harms human health, the ecosystem, industrial and agricultural production, and other fields. Therefore, the detection of NH3 has broad prospects and important significance. Ti3C2Tx is a common MXene material that is great for detecting NH3 at room temperature because it has a two-dimensional layered structure, a large specific surface area, is easy to functionalize on the surface, is sensitive to gases at room temperature, and is very selective for NH3. This review provides a detailed description of the preparation process as well as recent advances in the development of gas-sensing materials based on Ti3C2Tx MXene for room-temperature NH3 detection. It also analyzes the advantages and disadvantages of various preparation and synthesis methods for Ti3C2Tx MXene's performance. Since the gas-sensitive performance of pure Ti3C2Tx MXene regarding NH3 can be further improved, this review discusses additional composite materials, including metal oxides, conductive polymers, and two-dimensional materials that can be used to improve the sensitivity of pure Ti3C2Tx MXene to NH3. Furthermore, the present state of research on the NH3 sensitivity mechanism of Ti3C2Tx MXene-based sensors is summarized in this study. Finally, this paper analyzes the challenges and future prospects of Ti3C2Tx MXene-based gas-sensitive materials for room-temperature NH3 detection.

17.
Mikrochim Acta ; 191(8): 451, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38970693

ABSTRACT

Ti3C2Tx MXene/CuxO composites were prepared by acid etching combined with electrochemical technique. The abundant active sites on the surface of MXene greatly increase the loading of CuxO nanoparticles, and the synergistic effect between the different components of the composite can accelerate the oxidation reaction of glucose. The results indicate that at the working potential of 0.55 V (vs. Ag/AgCl), the glucose sensor based on Ti3C2Tx MXene/CuxO composite presents large linear concentration ranges from 1 µM to 4.655 mM (sensitivity of 361 µA mM-1 cm-2) and from 5.155 mM to 16.155 mM (sensitivity of 133 µA mM-1 cm-2). The limit of detection is 0.065 µM. In addition, the sensor effectively avoids the oxidative interference of common interfering species such as ascorbic acid, dopamine and uric acid. The sensor has good reproducibility, stability and acceptable recoveries for the detection of glucose in human sweat sample (97.5-103.3%) with RSD values less than 4%. Based on these excellent properties it has great potential for the detection of glucose in real samples.


Subject(s)
Copper , Electrochemical Techniques , Glucose , Limit of Detection , Titanium , Copper/chemistry , Humans , Titanium/chemistry , Glucose/analysis , Glucose/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Sweat/chemistry , Electrodes , Oxidation-Reduction , Reproducibility of Results , Biosensing Techniques/methods , Nanocomposites/chemistry
18.
Small ; : e2402143, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934343

ABSTRACT

MXene is considered as a promising solid lubricant due to facile shearing ability and tuneable surface chemistry. However, it faces challenges in high-humidity environments where excessive water molecules can significantly impact its 2D structure, thus deteriorating its lubricating properties. In this work, the self-assembled monolayers are formed on MXene by surface chlorination (MXene-Cl) and fluorination (MXene-F), and their friction behaviors in high/low humidity are investigated. The results indicate that MXene-F and MXene-Cl can maintain a relatively constant friction coefficient (CoF) (MXene-F ∼0.76, MXene-Cl ∼0.48) under both high (75%) and low (25%)-relative humidity (RH) environments. Meanwhile, the MXene-F and MXene-Cl display a lower CoF than the pristine MXene (MXene CoF∼1.18) in high humidity. The above phenomena are mainly attributed to the preservation of its 2D layered structure, the increased layer spacing, and superficial partial oxidation for SAMs-functionalized MXene under high humidity during friction. Interestingly, MXene-Cl with moderate water resistance has a lower CoF than that of MXene-F with complete water resistance. The nanostructured water adsorption capacity and larger interlayer spacing of MXene-Cl make it exhibit a lower CoF compared to MXene-F. The findings of this study offer valuable guidance for tailoring MXene by surface chemical functionalization as an efficient solid lubricant in high humidity.

19.
Mikrochim Acta ; 191(7): 371, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839652

ABSTRACT

Industrialization and agricultural demand have both improved human life and led to environmental contamination. Especially the discharge of a lot of poisonous and harmful gases, including ammonia, ammonia pollution has become a pressing problem. High concentrations of ammonia can pose significant threats to both the environment and human health. Therefore, accurate monitoring and detection of ammonia gas are crucial. To address this challenge, we have developed an ammonia gas sensor using In(OH)3/Ti3C2Tx nanocomposites through an in-situ electrostatic self-assembly process. This sensor was thoroughly characterized using advanced techniques like XRD, XPS, BET, and TEM. In our tests, the I/M-2 sensor exhibited remarkable performance, achieving a 16.8% response to 100 ppm NH3 at room temperature, which is a 3.5-fold improvement over the pure Ti3C2Tx MXene sensor. Moreover, it provides swift response time (20 s), high response to low NH3 concentrations (≤ 10 ppm), and excellent long-term stability (30 days). These exceptional characteristics indicate the immense potential of our In(OH)3/Ti3C2Tx gas sensor in ammonia detection.

20.
ACS Appl Mater Interfaces ; 16(27): 34798-34808, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38923889

ABSTRACT

Developing a non-noble metal-based bifunctional electrocatalyst with high efficiency and stability for overall water splitting is desirable for renewable energy systems. We developed a novel method to fabricate a heterostructured electrocatalyst, comprising a NiCoP nanoneedle array grown on Ti3C2Tx MXene-coated Ni foam (NCP-MX/NF) using a dip-coating hydrothermal method, followed by phosphorization. Due to the abundance of active sites, enhanced electronic kinetics, and sufficient electrolyte accessibility resulting from the synergistic effects of NCP and MXene, NCP-MX/NF bifunctional alkaline catalysts afford superb electrocatalytic performance, with a low overpotential (72 mV at 10 mA cm-2 for HER and 303 mV at 50 mA cm-2 for OER), a low Tafel slope (49.2 mV dec-1 for HER and 69.5 mV dec-1 for OER), and long-term stability. Moreover, the overall water splitting performance of NCP-MX/NF, which requires potentials as low as 1.54 and 1.76 V at a current density of 10 and 50 mA cm-2, respectively, exceeded the performance of the Pt/C∥IrO2 couple in terms of overall water splitting. Density functional theory (DFT) calculations for the NCP/Ti3C2O2 interface model predicted the catalytic contribution to interfacial formation by analyzing the electronic redistribution at the interface. This contribution was also evaluated by calculating the adsorption energetics of the descriptor molecules (H2O and the H and OER intermediates).

SELECTION OF CITATIONS
SEARCH DETAIL