Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.179
Filter
1.
Rev. Flum. Odontol. (Online) ; 1(66): 180-190, jan-abr.2025. ilus
Article in Portuguese | LILACS, BBO - Dentistry | ID: biblio-1570764

ABSTRACT

A osteonecrose dos maxilares induzida por medicamentos (MRONJ) caracteriza-se por exposição óssea ou osso que pode ser sondado através de fístula intra ou extraoral, em região maxilofacial, e que não cicatriza dentro de oito semanas. A MRONJ é uma condição rara e debilitante que pode causar dor, disfagia e odor desagradável na cavidade oral, afetando pacientes com histórico ou sob uso contínuo de terapia antirreabsortiva, isolada ou associada a imunomoduladores ou drogas antiangiogênicas, mas sem histórico de radioterapia nos maxilares. O objetivo desta revisão narrativa de literatura é compilar os principais aspectos sobre a etiopatogenia da MRONJ e as opções terapêuticas disponíveis. A etiologia da MRONJ é multifatorial, complexa, e não está totalmente compreendida, não havendo um tratamento definitivo, mas diversas modalidades terapêuticas que visam o controle da dor e da progressão da osteonecrose. Conclui-se com essa revisão que o entendimento da etiopatogenia da MRONJ pelo cirurgião-dentista lhe permite adotar medidas preventivas, bem como o conhecimento das modalidades terapêuticas disponíveis lhe possibilita oferecer o manejo adequado para seu paciente, conforme o estágio da doença.


Medication-related osteonecrosis of the jaw (MRONJ) is characterized by exposed bone or bone that can be probed through an intra or extraoral fistula, in the maxillofacial region, which does not heal within eight weeks. MRONJ is a rare and debilitating condition that can cause pain, dysphagia and unpleasant odor in the oral cavity, affecting patients with a history or continuous use of antiresorptive therapy, alone or associated with immunomodulators or antiangiogenic drugs, but without a history of radiotherapy to the jaws. The aim of this narrative literature review is to compile the main aspects about the etiopathogenesis of MRONJ and the available therapeutic options. The etiology of MRONJ is multifactorial, complex, and is not fully understood, with no definitive treatment, but several therapeutic modalities that aim to control pain and the progression of osteonecrosis. It is concluded from this review that the understanding of the etiopathogenesis of MRONJ by the dental surgeon allows him to adopt preventive measures, as well as the knowledge of the therapeutic modalities available allows him to offer the appropriate management for his patient, depending on the stage of the disease.


Subject(s)
Osteonecrosis , Pathology, Oral , Therapeutics , Bisphosphonate-Associated Osteonecrosis of the Jaw , Zoledronic Acid , Jaw
2.
Arq. bras. oftalmol ; Arq. bras. oftalmol;88(1): e2023, 2025. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1568848

ABSTRACT

ABSTRACT Purpose: The epithelial-mesenchymal transition of human lens epithelial cells plays a role in posterior capsule opacification, a fibrotic process that leads to a common type of cataract. Hyaluronic acid has been implicated in this fibrosis. Studies have investigated the role of transforming growth factor (TGF)-β2 in epithelial-mesenchymal transition. However, the role of TGF-β2 in hyaluronic acid-mediated fibrosis of lens epithelial cell remains unknown. We here examined the role of TGF-β2 in the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells. Methods: Cultured human lens epithelial cells (HLEB3) were infected with CD44-siRNA by using the Lipofectamine 3000 transfection reagent. The CCK-8 kit was used to measure cell viability, and the scratch assay was used to determine cell migration. Cell oxidative stress was analyzed in a dichloro-dihydro-fluorescein diacetate assay and by using a flow cytometer. The TGF-β2 level in HLEB3 cells was examined through immunohistochemical staining. The TGF-β2 protein level was determined through western blotting. mRNA expression levels were determined through quantitative real-time polymerase chain reaction. Results: Treatment with hyaluronic acid (1.0 μM, 24 h) increased the epithelial-mesenchymal transition of HLEB3 cells. The increase in TGF-β2 levels corresponded to an increase in CD44 levels in the culture medium. However, blocking the CD44 function significantly reduced the TGF-β2-mediated epithelial-mesenchymal transition response of HLEB3 cells. Conclusions: Our study showed that both CD44 and TGF-β2 are critical contributors to the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells, and that TGF-β2 in epithelial-mesenchymal transition is regulated by CD44. These results suggest that CD44 could be used as a target for preventing hyaluronic acid-induced posterior capsule opacification. Our findings suggest that CD44/TGF-β2 is crucial for the hyaluronic acid-induced epithelial-mesenchymal transition of lens epithelial cells.

3.
Life Sci ; 354: 122979, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39147315

ABSTRACT

Stroke is the second most common cause of death and one of the most common causes of disability worldwide. The intestine is home to several microorganisms that fulfill essential functions for the natural and physiological functioning of the human body. There is an interaction between the central nervous system (CNS) and the gastrointestinal system that enables bidirectional communication between them, the so-called gut-brain axis. Based on the gut-brain axis, there is evidence of a link between the gut microbiota and the regulation of microglial functions through glial activation. This interaction is partly due to the immunological properties of the microbiota and its connection with the CNS, such that metabolites produced by the microbiota can cross the gut barrier, enter the bloodstream and reach the CNS and significantly affect microglia, astrocytes and other cells of the immune system. Studies addressing the effects of short-chain fatty acids (SCFAs) on glial function and the BBB in ischemic stroke are still scarce. Therefore, this review aims to stimulate the investigation of these associations, as well as to generate new studies on this topic that can clarify the role of SCFAs after stroke in a more robust manner.


Subject(s)
Blood-Brain Barrier , Fatty Acids, Volatile , Gastrointestinal Microbiome , Ischemic Stroke , Neuroglia , Humans , Blood-Brain Barrier/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Ischemic Stroke/metabolism , Ischemic Stroke/physiopathology , Animals , Neuroglia/metabolism , Brain-Gut Axis/physiology , Brain Ischemia/metabolism
4.
Neurochem Res ; 49(10): 2940-2956, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39088165

ABSTRACT

Alterations of the microbiota-gut-brain axis has been associated with intestinal and neuronal inflammation in Parkinson's disease (PD). The aim of this work was to study some mechanisms associated with the neuroprotective effect of a combination (MIX) of lactic acid bacteria (LAB) composed by Lactiplantibacillus plantarum CRL2130 (riboflavin overproducing strain), Streptococcus thermophilus CRL808 (folate producer strain), and CRL807 (immunomodulatory strain) in cell cultures and in a chronic model of parkinsonism induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in aged mice, and under levodopa-benserazide treatment. In vitro, N2a differentiated neurons were exposed to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or with conditioned media from BV-2 cells exposed to the bacterial extracts. In vivo, motor skills, tyrosine hydrolase (TH) in brain and cytokine concentrations in serum and in brain were evaluated. The study of the faecal microbiota and the histology of the small intestine was also performed. The results showed that the neuroprotective effect associated with LAB MIX administration did not interfere with levodopa-benserazide treatment. This effect could be associated with the antioxidant and immunomodulatory potential of the LAB selected in the MIX, and was associated with the significant improvement in the motor tests and a higher number of TH + cells in the brain. In addition, LAB MIX administration was associated with modulation of the immune response. LAB administration decreased intestinal damage with an increase in the villus length /crypt depth ratio. Finally, the administration of the LAB MIX in combination with levodopa-benserazide treatment was able to partially revert the intestinal dysbiosis observed in the model, showing greater similarity to the profiles of healthy controls, and highlighting the increase in the Lactobacillaceae family. Different mechanisms of action would be related to the protective effect of the selected LAB combination which has the potential to be evaluated as an adjuvant for conventional PD therapies.


Subject(s)
Benserazide , Levodopa , Mice, Inbred C57BL , Neuroprotective Agents , Parkinsonian Disorders , Animals , Levodopa/pharmacology , Benserazide/pharmacology , Benserazide/therapeutic use , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Male , Mice , Drug Combinations , Gastrointestinal Microbiome/drug effects , Disease Models, Animal , Lactobacillales , Probiotics/therapeutic use , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Streptococcus thermophilus/drug effects
5.
Poult Sci ; 103(10): 104105, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153445

ABSTRACT

The study investigated guanidinoacetic acid (GAA) supplementation with varying dietary digestible arginine (Arg) and glycine+serine (Gly+Ser) concentrations in the starter phase, exploring respective carry-over effects on growth performance, blood chemistry, incidence of pectoral myopathies and proximate composition in broilers. A total of 2,800 one-day-old male broiler chicks were distributed in a central composite design with 2 factors and double experimental mesh, represented by supplementation or omission of 0.6 g per kg of GAA, with a central point represented by 107% of Arg and 147% of Gly+Ser, 4 factorial points (combinations of Arg/Gly+Ser concentrations: 96.4/132.5%; 117.6/132.5%; 96.4/161.5%, and 117.6/132.5%), and 4 axial points (combinations of axial points estimated for Arg and Gly+Ser, with the central points of 92/147%; 122/147%; 107/126.5, and 107/167.5%), totaling 18 treatments, 4 repetitions to factorial and axial points, 24 replicates to the central point, and 25 birds per pen. Feed conversion ratio (FCR) from d 1 to 10 had a linear response (P = 0.009) for the decreasing Arg content and a quadratic response (P = 0.047) for Gly+Ser concentrations. Broilers supplemented GAA had lower FCR compared with nonsupplemented groups from d 1 to 10 (P = 0.048) and d 1 to 42 (P = 0.026). Aspartate aminotransferase (AST) exhibited increasing and decreasing linear effects as a function of Arg (P = 0.008) and Gly+Ser (P = 0.020) concentrations, respectively. Guanidinoacetic acid decreased serum AST (P = 0.028). Guanidinoacetic acid reduced moderate + severe (P = 0.039) and mild (P = 0.015) Wooden Breast scores. The occurrence of normal White Striping increased (P = 0.002), while severe score was reduced (P = 0.029) with GAA supplementation. In conclusion, increased digestible Arg:Lys and 14% and 6% above the recommendations (107% and 147%), respectively, provided improved FCR during the starter phase. Dietary GAA supplementation (0.6 g per kg) improved FCR, reduced severity of breast myopathies and appears to have reduced muscle damage in broilers fed plant-based diets.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Arginine , Chickens , Diet , Dietary Supplements , Glycine , Serine , Animals , Chickens/physiology , Chickens/growth & development , Glycine/analogs & derivatives , Glycine/administration & dosage , Glycine/pharmacology , Animal Feed/analysis , Arginine/administration & dosage , Arginine/pharmacology , Dietary Supplements/analysis , Diet/veterinary , Male , Animal Nutritional Physiological Phenomena/drug effects , Serine/administration & dosage , Serine/pharmacology , Random Allocation , Pectoralis Muscles
6.
Food Chem ; 461: 140827, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39146684

ABSTRACT

This study reports a combined approach to assess the antioxidant activity of Zuccagnia-type propolis. Fractions exhibiting the highest antioxidant activities evidenced by DPPH, a ß-carotene bleaching and superoxide radical scavenging activity-non-enzymatic assays, were processed by LC-HRMS/MS to characterize the relevant chemical compounds. A computational protocol based on the DFT calculations was used to rationalize the main outcomes. Among the 28 identified flavonoids, caffeic acids derivatives were in the fraction exhibiting the highest antioxidant activity, with 1-methyl-3-(4'-hydroxyphenyl)-propyl caffeic acid ester and 1-methyl-3-(3',4'-dihydroxyphenyl)-propyl caffeic acid ester as major components. Results clearly showed roles of specific chemical motifs, which can be supported by the computational analysis. This is the first report ascribing the antioxidant ability of Zuccagnia-type propolis to its content in specific caffeic acid derivatives, a potential source of radical scavenging phytochemicals. The proposed protocol can be extended to the study of other plant-products to address the most interesting bioactive compounds.


Subject(s)
Antioxidants , Propolis , Tandem Mass Spectrometry , Propolis/chemistry , Antioxidants/chemistry , Caffeic Acids/chemistry , Caffeic Acids/analysis , Flavonoids/chemistry , Flavonoids/analysis , Molecular Structure , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid
7.
Front Vet Sci ; 11: 1415658, 2024.
Article in English | MEDLINE | ID: mdl-39113726

ABSTRACT

Introduction: Corneal ulcers are common lesions in both human and veterinary medicine. However, only a few studies have evaluated the efficacy of cross-linked hyaluronic acid (X-HA) eye drops on corneal wound healing. To our knowledge, this is the first study to demonstrate and compare the efficacy of amniotic membrane extract eye drops (AMEED) and X-HA for corneal wound healing in rats. Material and methods: A total of 15 male Wistar rats (30 eyes) were used in this study. Then, 10 eyes were treated with X-HA, AMEED, or 0.9% saline. After general and topical anesthesia, a superficial corneal ulcer was created using a corneal trephine. The defect was further polished with a diamond burr. Three groups of 10 eyes each were treated with either one drop of 0.75% X-HA or AMEED or 0.9% saline (control), administered every 12 h for a duration of 72 h. The median epithelial defect area (MEDA), expressed as a percentage of the total corneal surface, was measured at 0, 12, 24, 36, 48, and 72 h. Re-epithelization time scores were also evaluated. The Kruskal-Wallis test was used to compare median times for re-epithelization and histopathologic scores between groups, while the Friedman test (for paired data) was employed to compare results from the serial analysis of MEDA and vascularization scores between groups. Results: MEDA was not significantly different between X-HA and AMEED. However, MEDA was significantly smaller in the X-HA group compared to the control group at 36 h (2.73 interquartile range (IQR) 5.52% x 9.95 IQR 9.10%, P=0.024) and 48 h (0.00 IQR 0.26% x 6.30 IQR 8.54%, P=0.030). The overall time for re-epithelization was significantly lower in the X-HA group (3.00 IQR 3.00) compared to the AMEED (6.5 IQR 3.00) and control (7.00 IQR 1.00) groups (P=0.035). Vascularization, hydropic degeneration, and epithelial-stromal separation were significantly less observed in samples in the X-HA-treated compared to samples in the AMEED- and saline-treated groups. Significantly more corneal epithelium cells were labeled for caspase3 in samples from the AMEED- and saline-treated groups compared to those from the X-HA-treated group. Discussion: Topical X-HA has been shown to accelerate corneal epithelial healing. AMEED did not decrease corneal re-epithelialization time. X-HA may also potentially be used as an adjunct therapy for treating corneal ulcers in clinical situations.

8.
Foods ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39123510

ABSTRACT

The organic acids produced by lactic acid bacteria (LAB) during the fermentation of sourdoughs have the ability to reduce the growth of different molds. However, this ability depends on the LAB used. For this reason, in this study, the proportions of different LAB were optimized to obtain aqueous extracts (AEs) from sourdough to reduce fungal growth in vitro, control the acetic acid concentration, and obtain a specific lactic to acetic acid ratio. In addition, the optimized mixtures were used to formulate partially baked bread (PBB) and evaluate the mold growth and bread quality during refrigerated storage. Using a simplex-lattice mixture design, various combinations of Lactiplantibacillus plantarum, Lacticaseibacillus casei, and Lactobacillus acidophilus were evaluated for their ability to produce organic acids and inhibit mold growth. The mixture containing only Lpb. plantarum significantly reduced the growth rates and extended the lag time of Penicillium chrysogenum and P. corylophilum compared with the control. The AEs' pH values ranged from 3.50 to 3.04. Organic acid analysis revealed that using Lpb. plantarum yielded higher acetic acid concentrations than when using mixed LAB. This suggests that LAB-specific interactions significantly influence organic acid production during fermentation. The reduced radial growth rates and extended lag times for both molds compared to the control confirmed the antifungal properties of the AEs from the sourdoughs. Statistical analyses of the mixture design using polynomial models demonstrated a good fit for the analyzed responses. Two optimized LAB mixtures were identified that maximized mold lag time, targeted the desired acetic acid concentration, and balanced the lactic to acetic acid ratio. The addition of sourdough with optimized LAB mixtures to PBB resulted in a longer shelf life (21 days) and adequately maintained product quality characteristics during storage. PBB was subjected to complete baking and sensory evaluation. The overall acceptability was slightly higher in the control without sourdough (7.50), followed by bread formulated with the optimized sourdoughs (ranging from 6.78 to 7.10), but the difference was not statistically significant (p > 0.05). The sensory analysis results indicated that the optimization was used to successfully formulate a sourdough bread with a sensory profile closely resembling that of a nonsupplemented one. The designed LAB mixtures can effectively enhance sourdough bread's antifungal properties and quality, providing a promising approach for extending bread shelf life while maintaining desirable sensory attributes.

9.
Materials (Basel) ; 17(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39124423

ABSTRACT

Human hair, composed primarily of keratin, represents a sustainable waste material suitable for various applications. Synthesizing keratin nanoparticles (KNPs) from human hair for biomedical uses is particularly attractive due to their biocompatibility. In this study, keratin was extracted from human hair using concentrated sulfuric acid as the hydrolysis agent for the first time. This process yielded KNPs in both the supernatant (KNPs-S) and precipitate (KNPs-P) phases. Characterization involved scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Zeta potential analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TG). KNPs-S and KNPs-P exhibited average diameters of 72 ± 5 nm and 27 ± 5 nm, respectively. The hydrolysis process induced a structural rearrangement favoring ß-sheet structures over α-helices in the KNPs. These nanoparticles demonstrated negative Zeta potentials across the pH spectrum. KNPs-S showed higher cytotoxicity (CC50 = 176.67 µg/mL) and hemolytic activity, likely due to their smaller size compared to KNPs-P (CC50 = 246.21 µg/mL), particularly at concentrations of 500 and 1000 µg/mL. In contrast, KNPs-P did not exhibit hemolytic activity within the tested concentration range of 32.5 to 1000 µg/mL. Both KNPs demonstrated cytocompatibility with fibroblast cells in a dose-dependent manner. Compared to other methods reported in the literature and despite requiring careful washing and neutralization steps, sulfuric acid hydrolysis proved effective, rapid, and feasible for producing cytocompatible KNPs (biomaterials) in single-step synthesis.

10.
Neurosurg Rev ; 47(1): 416, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39122900

ABSTRACT

Scoliosis is the most prevalent type of spinal deformity, with a 2-3% prevalence in the general population. Moreover, surgery for scoliotic deformity may result in severe blood loss and, consequently, the need for blood transfusions, thereby increasing surgical morbidity and the rate of complications. Several antifibrinolytic drugs, such as tranexamic acid, have been regarded as safe and effective options for reducing blood loss. Therefore, the present study aimed to analyse the effectiveness of this drug for controlling bleeding when used intraoperatively and in the first 48 h after surgery. A prospective randomized study of a cohort of patients included in a mass event for scoliosis treatment using PSF was performed. Twenty-eight patients were analysed and divided into two groups: 14 patients were selected for intraoperative and postoperative use of tranexamic acid (TXA), and the other 14 were selected only during the intraoperative period. The drainage bleeding rate, length of hospital stay, number of transfused blood units, and rate of adverse clinical effects were compared. All the patients involved had similar numbers of fusion levels addressed and similar scoliosis profiles. The postoperative bleeding rate through the drain did not significantly differ between the two groups (p > 0.05). There was no significant difference in the number of transfused blood units between the groups (p = 0.473); however, in absolute numbers, patients in the control group received more transfusions. The length of hospital stay was fairly similar between the groups, with no statistically significant difference. Furthermore, the groups had similar adverse effects (p = 0.440), with the exception of nausea and vomiting, which were twice as common in the TXA group postoperatively than in the control group. No significant differences were found in the use of TXA during the first 48 postoperative hours or in postoperative outcomes.


Subject(s)
Antifibrinolytic Agents , Blood Loss, Surgical , Scoliosis , Spinal Fusion , Tranexamic Acid , Humans , Tranexamic Acid/therapeutic use , Scoliosis/surgery , Female , Spinal Fusion/methods , Spinal Fusion/adverse effects , Male , Antifibrinolytic Agents/therapeutic use , Blood Loss, Surgical/prevention & control , Adolescent , Prospective Studies , Adult , Blood Transfusion/statistics & numerical data , Treatment Outcome , Postoperative Period , Length of Stay , Young Adult , Postoperative Hemorrhage/epidemiology
11.
J Wound Care ; 33(8): 612-616, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39140406

ABSTRACT

There are several reasons for skin damage, including genetic factors, disorders, acute trauma, hard-to-heal wounds, or surgical interventions. Whatever the cause, wounds have a substantial impact on people who experience them, their caregivers and the healthcare system. Advanced wound care products have been researched and developed, providing an opportunity for faster and more complete healing. Tissue engineering (TE) is a promising strategy that can overcome limitations when choosing a graft for a wound. Amniotic membrane is a highly abundant, readily available, and inexpensive biological tissue that does not raise ethical concerns, with many applications in different fields of TE and regenerative medicine. It has attractive physical characteristics, such as elasticity, rigidity and mechanical strength, among others. The effects can also be potentiated by association with other substances, such as hyaluronic acid and growth factors. This paper describes new perspectives involving the use of amniotic membranes.


Subject(s)
Amnion , Tissue Engineering , Wound Healing , Humans , Amnion/transplantation , Wounds and Injuries/therapy , Regenerative Medicine/methods
12.
Cancer Metab ; 12(1): 24, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113152

ABSTRACT

BACKGROUND: Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines. METHODS: Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation. RESULTS: In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1. CONCLUSION: In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.

13.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126003

ABSTRACT

Periapical lesions are common pathologies affecting the alveolar bone, often initiated by intraradicular lesions resulting from microbial exposure to dental pulp. These microorganisms trigger inflammatory and immune responses. When endodontic treatment fails to eliminate the infection, periapical lesions persist, leading to bone loss. The RANK/RANKL/OPG pathway plays a crucial role in both the formation and the destruction of the bone. In this study, the objective was to inhibit the RANK/RANKL pathway in vitro within exposed Thp-1 macrophages to endodontic microorganisms, specifically Enterococcus faecalis, which was isolated from root canals of 20 patients with endodontic secondary/persistent infection, symptomatic and asymptomatic, and utilizing an α-IRAK-4 inhibitor, we introduced endodontic microorganisms and/or lipoteichoic acid from Streptococcus spp. to cellular cultures in a culture plate, containing thp-1 cells and/or PBMC from patients with apical periodontitis. Subsequently, we assessed the percentages of RANK+, RANKL+, and OPG+ cells through flow cytometry and measured the levels of several inflammatory cytokines (IL-1ß, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) in the cellular culture supernatant through a CBA kit and performed analysis by flow cytometry. A significant difference was observed in the percentages of RANK+RANKL+, OPG+ RANKL+ cells in thp-1 cells and PBMCs from patients with apical periodontitis. The findings revealed significant differences in the percentages of the evaluated cells, highlighting the novel role of the IRAK-4 inhibitor in addressing this oral pathology, apical periodontitis, where bone destruction is observed.


Subject(s)
Macrophages , Periapical Periodontitis , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Signal Transduction , Humans , RANK Ligand/metabolism , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , THP-1 Cells , Receptor Activator of Nuclear Factor-kappa B/metabolism , Periapical Periodontitis/metabolism , Periapical Periodontitis/microbiology , Periapical Periodontitis/pathology , Cytokines/metabolism , Enterococcus faecalis , Lipopolysaccharides , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/metabolism , Male , Osteoprotegerin/metabolism , Adult , Teichoic Acids/pharmacology
14.
J Appl Toxicol ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128859

ABSTRACT

Rubus imperialis (Rosaceae) is a Brazilian medicinal plant that already exhibited therapeutical perspectives. However, previous studies revealed cellular and/or genetic toxicity of extracts from aerial parts of this plant, as well as other species of the Rubus genus. Being 2ß,3ß-19α-trihydroxyursolic acid (2B) one of the major compounds of this plant, with proven pharmacological effect, it is important to investigate the biosafety of this isolated compound. Therefore, in the present study, (2B) was tested by several cytogenotoxic endpoints up to 20 µg/ml in human hepatoma HepG2/C3A cells. The test compound did not produce any decreased cell viability, DNA damage, chromosomal mutations, cell cycle changes, or apoptotic effects in the tested cells. Additionally, RT-qPCR analysis revealed the downregulation of CYP3A4 (metabolism), M-TOR (cell death), and CDKN1A (cell cycle) genes. Under the experimental conditions used, the 2B compound did not show cytogenotoxic activity after a single exposure to HepG2/C3A human cells.

15.
J Sci Food Agric ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132918

ABSTRACT

BACKGROUND: Consumption of pseudocereal-based foods decreased in phytate concentration can provide better nutrition concerning mineral bioavailability. This study aimed to evaluate the mineral bioavailability of quinoa sourdough-based snacks in a murine model. The mice were divided into five groups. One group was fed with basal snacks; three control groups received quinoa-based snacks made from non-fermented dough, dough without inoculum, and chemically acidified dough; and the test group (GF) received quinoa snacks elaborated from sourdough fermented by a phytase-positive strain, Lactiplantibacillus plantarum CRL 1964. Food intake, body weight, and mineral concentration in blood and organs (liver, kidney, and femur) were determined. RESULTS: Food consumption increased during the feeding period and had the highest (16.2-24.5%) consumption in the GF group. Body weight also increased during the 6-weeks of trial. The GF group showed higher (6.0-10.2%) body weight compared with the other groups from the fifth week. The concentrations of iron, zinc, calcium, magnesium, and phosphorus in blood, iron and phosphorus in the liver, manganese and magnesium in the kidney, and calcium and phosphorus in the femur increased significantly (1.1-2.7-fold) in the GF group compared to the control groups. CONCLUSION: The diet that includes quinoa snacks elaborated with sourdough fermented by phytase-positive strain L. plantarum CRL 1964 increased the concentrations of minerals in the blood, liver, kidney, and femur of mice, counteracting the antinutritional effects of phytate. This study demonstrates that the diminution in phytate content and the consequent biofortification in minerals are a suitable tool for producing novel foods. © 2024 Society of Chemical Industry.

16.
ChemMedChem ; : e202400452, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113101

ABSTRACT

Current treatments for type 2 diabetes (T2D) mainly rely on exercise, dietary control, and anti-diabetic drugs to enhance insulin secretion and improve insulin sensitivity. However, there is a need for more therapeutic options, as approved drugs targeting different pharmacological objectives are still unavailable. One potential target that has attracted attention is the protein tyrosine phosphatase 1B (PTP1B), which negatively regulates the insulin signaling pathway. In this work, a comprehensive computational screening was carried out using cheminformatics and molecular docking on PTP1B, employing a rigorous repurposing approach. The screening involved approved drugs and compounds under research as anti-diabetics that bind to targets such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase. Several computational hits were then meticulously tested in vitro against PTP1B, with 13-cis-retinoic acid (3a) showing an IC50 of 0.044 mM and competitive inhibition. Molecular dynamics studies further confirmed that 3a can bind to the catalytic binding site of PTP1B. Finally, 3a is the first time it has been reported as an inhibitor of PTP1B, making it a potentially valuable candidate for further studies in D2T treatment.

17.
Chemosphere ; 364: 143019, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103100

ABSTRACT

An integrated chemical and mineralogical characterization approach was applied to smelter wastes collected from 50-year-old dump sites in Argentina. Characterization included pseudo-total element concentrations, acid generation/neutralization potential, sequential extractions, pH-dependent leaching kinetics, and mineralogical analysis of all residues. These analyses provided detailed information on the reactivity of the minerals in the waste material and associated metal release. Cadmium and Zn were the elements of greatest environmental concern due to their high mobility. On average, the release of Zn and Cd in pH-dependent leaching essays reached 17.6% (up to 5.24 mg g-1) and 52.7% (up to 0.02 mg g-1) of the pseudo-total content, respectively. Moreover, Cd and Zn were also the metals that showed the higher proportions of labile fractions associated to the adsorbed and exchangeable fraction (60-92% for Cd and 19-38% for Zn). Since Cd and Zn concentrations in the residue are not high enough to form their own minerals, a large proportion of these elements would be weakly adsorbed on Fe oxyhydroxides. In contrast, the low release of Cu, Pb and Fe would be associated with these elements being incorporated into the crystalline structure of insoluble or very poorly soluble minerals. Lead is incorporated into plumbojarosite and anglesite. Copper was mainly in association with Fe oxyhydroxides and may also have been incorporated into the plumbojarosite structure. The latter could act as a sink especially for Pb under the acidic conditions of the smelter residue. Despite the elevated concentrations of Pb observed in the residue, it showed a very low mobility (≈0.1%), indicating that it is mostly stabilized. Nevertheless, the smelter residue is a continuous source of metals requiring remediation.


Subject(s)
Cadmium , Copper , Iron , Lead , Zinc , Argentina , Lead/analysis , Lead/chemistry , Cadmium/analysis , Cadmium/chemistry , Zinc/analysis , Zinc/chemistry , Iron/chemistry , Iron/analysis , Copper/analysis , Copper/chemistry , Metals, Heavy/analysis , Metals, Heavy/chemistry , Metallurgy , Environmental Monitoring , Chemical Fractionation , Minerals/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry
18.
Chemosphere ; 364: 143080, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39146989

ABSTRACT

Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, has been considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa L.) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.


Subject(s)
Germination , Hyaluronic Acid , Lactuca , Metal Nanoparticles , Seeds , Silver , Lactuca/drug effects , Lactuca/growth & development , Silver/chemistry , Silver/toxicity , Silver/pharmacology , Germination/drug effects , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Seeds/drug effects , Seeds/growth & development , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology
19.
Chem Biodivers ; : e202401315, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136528

ABSTRACT

We have synthesized a series of novel coumarin-steroid and triterpenoid hybrids and evaluated their potential anticancer activity through molecular docking calculations and in vitro antiproliferative assays. These hybrids, derived from estrone and oleanolic acid, were linked via hydrocarbon spacers of varying lengths. Molecular docking studies against human aromatase revealed strong interactions, particularly for compound 11d, which exhibited significant binding affinity (-12.6308 kcal/mol). In vitro assays demonstrated that compounds 6b and 11d had notable antiproliferative effects, with GI50 values of 5.4 and 7.0 µM against WiDr (colon) and HeLa (cervix) cancer cells, respectively. These findings highlight the potential of these hybrids as novel anticancer agents targeting aromatase, warranting further investigation and optimization.

20.
Transgenic Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103700

ABSTRACT

Lettuce is one of the most widely consumed vegetables in the world, commonly eaten fresh in salads, sandwiches, wraps, and as a garnish in various dishes. Consequently, it is a very promising vehicle to deliver vitamins, such as folate (vitamin B9), to a specific population using biofortified varieties generated by conventional or molecular breeding. A new genetically modified lettuce was generated with increased folate content. However, some issues related to public perception regarding this technology should still be evaluated. The aim of this study was to analyze whether consumers are willing to accept a folate-biofortified GM lettuce that could become available to the Brazilian market. A questionnaire involving several issues regarding lettuce consumption was answered by 2,391 people from almost all Brazilian states. When informed that the folic acid biofortified lettuce is a transgenic plant, 46.1% of respondents stated that they would eat it and 30.5% stated that it would be a possibility. This study demonstrated that if there is any explanation regarding the advantage in relation to the use of biotechnology, like enrichment with folic acid, the number of people who accept it increases.

SELECTION OF CITATIONS
SEARCH DETAIL