Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 497
Filter
1.
Clin Transl Oncol ; 2024 Oct 13.
Article in English | MEDLINE | ID: mdl-39397200

ABSTRACT

OBJECTIVE: An investigation of the diagnostic and clinical value of cell cycle-dependent kinase 1 (CDK1) in small cell lung cancer (SCLC). METHODS: A large tertiary hospital in Jiangxi Province enrolled 80 SCLC cases, 105 cases of non-small cell lung cancer (NSCLC), 114 cases of pulmonary nodule (PN) and 60 control cases from December 2022 to December 2023. ELISA was used to measure CDK1 levels in serum. The expression levers of neuron-specific enolase (NSE), Pro gastrin-releasing peptide (ProGRP), squamous cell carcinoma antigen (SCCA), carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199) and cytokeratin 19 fragment (YFRA21-1) were detected by electrochemiluminescence immunoassay. RESULTS: ①CDK1, ProGRP, NSE, and CA199 expressions were significantly higher in the SCLC group compared to the NSCLC, PN and Control groups (P < 0.01). ②Spearman correlation analysis showed that serum levels of CDK1, NSE, and ProGRP were associated with clinical staging and lymph node metastasis in SCLC patients (P < 0.05). ③The serum levels of CDK1, NSE, and ProGRP in patients with extensive-disease (ED) SCLC were higher than those in patients with limited-disease (LD) SCLC (P < 0.05), and the serum levels of CDK1, NSE, and ProGRP in SCLC patients with lymph node metastasis were higher than those without lymph node metastasis (P < 0.05). ④Compared with the NSCLC group, the AUC of subjects diagnosed with SCLC by CDK1 was the largest and the sensitivity was the highest, 0.831 and 72.50%, the specificity of ProGRP in diagnosing SCLC is the highest, at 95.20% (P < 0.01). Compared with the PN group, CDK1 had the highest AUC, sensitivity, and specificity in diagnosing SCLC, with values of 0.93%, 88.80%, and 94.70%, respectively (P < 0.01). ⑤The combination of CDK1, ProGRP and NSE had the highest AUC and sensitivity of 0.903 and 86.30% for the diagnosis of SCLC (P < 0.01). CONCLUSION: CDK1 not only plays an important role in assisting the diagnosis of SCLC but also in the differential diagnosis between SCLC and NSCLC. The combination of CDK1 and NSE and ProGRP can significantly improve the diagnostic performance and provide new ideas for the clinical diagnosis of SCLC.

2.
Sci Rep ; 14(1): 23928, 2024 10 13.
Article in English | MEDLINE | ID: mdl-39397093

ABSTRACT

PIWI proteins, traditionally associated with germline development, have recently gained attention for their expression in various cancers, including colorectal cancer. However, the molecular mechanisms underlying their reactivation and impact on cancer initiation and progression remain elusive. Here, we found that PIWIL1 is expressed at relatively high levels in CRC-derived samples and cell lines, where it undergoes a dynamic relocalization to the centrosome during mitosis. Knockdown of PIWIL1 induces G2/M arrest associated with disruption of the mitotic spindle and aberrant metaphase events, highlighting its role in cell cycle progression. We also found that the expression of PIWIL1 is lost during the differentiation of Caco-2 cells into enterocytes and that PIWIL1 is expressed in cells at the base of the intestinal crypts in normal human colon tissue, where intestinal stem cells are known to reside. Thus, it is possible that the presence of PIWIL1 in cancer cells reflects a physiological role of this protein in stem cell maintenance, which would argue in favor of the proposed stem cell origin of CRC. Supporting this view, dedifferentiation of human fibroblasts into induced pluripotent stem cells (iPSCs) involves the reactivation of PIWIL2 expression, another member of the PIWI protein family. Overall, our findings suggest a role of PIWIL1 in mediating cell cycle dynamics, both in colorectal cancer cells and possibly also in intestinal stem cells. In a broader aspect, we provide evidence supporting an involvement of PIWI proteins in somatic stem cell maintenance, thus expanding the known non-gonadal functions of this protein family.


Subject(s)
Argonaute Proteins , Centrosome , Colorectal Neoplasms , Mitosis , Humans , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Centrosome/metabolism , Caco-2 Cells , Cell Cycle , Cell Differentiation , Cell Line, Tumor
3.
Eur J Pharmacol ; 983: 176963, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39260813

ABSTRACT

INTRODUCTION: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options. This study explores the potential of novel 5-nitro-thiophene-thiosemicarbazone derivatives as therapeutic agents for PDAC. METHODS: We evaluated the cytotoxicity of seven derivatives in peripheral blood mononuclear cells (PBMCs) and PDAC cell lines. Promising candidates (PR12 and PR17) were further analyzed for their effects on colony formation, cell cycle progression, and reactive oxygen species (ROS) production. PR17, the most promising derivative, was subjected to additional investigation, including analysis of autophagy-related genes and protein kinase inhibition. RESULTS: Three derivatives (PR16, PR19, and PR20) displayed cytotoxicity towards PBMCs. PR12 reduced colony formation and G0/G1 cell cycle arrest in PDAC cells. Notably, PR17 exhibited potent activity in MIA PaCa-2 cells, inducing S-phase cell cycle arrest, downregulating autophagy genes, and inhibiting key protein kinases. CONCLUSION: PR17, a 5-nitro-thiophene-thiosemicarbazone derivative, demonstrates promising antineoplastic activity against PDAC cells by potentially modulating cell cycle progression, autophagy, and protein kinase signaling. Further studies are warranted to elucidate the detailed mechanism of action and explore its efficacy in vivo.


Subject(s)
Antineoplastic Agents , Autophagy , Carcinoma, Pancreatic Ductal , Cell Cycle Checkpoints , Pancreatic Neoplasms , Thiophenes , Thiosemicarbazones , Humans , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Thiophenes/pharmacology , Thiophenes/chemistry , Cell Cycle Checkpoints/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Protein Kinases/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Cell Death/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects
4.
Int J Mol Sci ; 25(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39337305

ABSTRACT

Graphene nanoplatelets (UGZ-1004) are emerging as a promising biomaterial in regenerative medicine. This study comprehensively evaluates UGZ-1004, focusing on its physical properties, cytotoxicity, intracellular interactions, and, notably, its effects on mesenchymal stem cells (MSCs). UGZ-1004 was characterized by lateral dimensions and layer counts consistent with ISO standards and demonstrated a high carbon purity of 0.08%. Cytotoxicity assessments revealed that UGZ-1004 is non-toxic to various cell lines, including 3T3 fibroblasts, VERO kidney epithelial cells, BV-2 microglia, and MSCs, in accordance with ISO 10993-5:2020/2023 guidelines. The study focused on MSCs and revealed that UGZ-1004 supports their gene expression alterations related to self-renewal and proliferation. MSCs exposed to UGZ-1004 maintained their characteristic surface markers. Importantly, UGZ-1004 promoted significant upregulation of genes crucial for cell cycle regulation and DNA repair, such as CDK1, CDK2, and MDM2. This gene expression profile suggests that UGZ-1004 can enhance MSC self-renewal capabilities, ensuring robust cellular function and longevity. Moreover, UGZ-1004 exposure led to the downregulation of genes associated with tumor development, including CCND1 and TFDP1, mitigating potential tumorigenic risks. These findings underscore the potential of UGZ-1004 to not only bolster MSC proliferation but also enhance their self-renewal processes, which are critical for effective regenerative therapies. The study highlights the need for continued research into the long-term impacts of graphene nanoplatelets and their application in MSC-based regenerative medicine.


Subject(s)
Cell Proliferation , Graphite , Mesenchymal Stem Cells , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Graphite/chemistry , Graphite/pharmacology , Mice , Chlorocebus aethiops , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Vero Cells , Gene Expression Regulation/drug effects , Nanoparticles/chemistry , Cell Line , Nanostructures/chemistry
5.
Molecules ; 29(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339471

ABSTRACT

Lithium, a natural element, has been employed as a mental stabilizer in psychiatric treatments; however, some reports indicate it has an anticancer effect, prompting the consideration of repurposing lithium for cancer treatment. The potential anticancer use of lithium may depend on its form (salt type) and the type of cancer cells targeted. Little is known about the effects of Li2CO3 or LiCl on cancer cells, so we focused on exploring their effects on proliferation, apoptosis, migration, and cell cycle as part of the hallmarks of cancer. Firstly, we established the IC50 values on HeLa, SiHa, and HaCaT cells with LiCl and Li2CO3 and determined by crystal violet that cell proliferation was time-dependent in the three cell lines (IC50 values for LiCl were 23.43 mM for SiHa, 23.14 mM for HeLa, and 15.10 mM for HaCaT cells, while the IC50 values for Li2CO3 were 20.57 mM for SiHa, 11.52 mM for HeLa, and 10.52 mM for HaCaT cells.) Our findings indicate that Li2CO3 and LiCl induce DNA fragmentation and caspase-independent apoptosis, as shown by TUNEL, Western Blot, and Annexin V/IP assay by flow cytometry. Also, cell cycle analysis showed that LiCl and Li2CO3 arrested the cervical cancer cells at the G1 phase. Moreover, lithium salts displayed an anti-migratory effect on the three cell lines observed by the wound-healing assay. All these findings imply the viable anticancer effect of lithium salts by targeting several of the hallmarks of cancer.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Lithium Chloride , Uterine Cervical Neoplasms , Humans , Lithium Chloride/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Movement/drug effects , Female , HeLa Cells , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Lithium Carbonate/pharmacology , Cell Cycle/drug effects , Drug Repositioning
6.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273443

ABSTRACT

Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or "differentiated" phenotype and a "proliferative-dedifferentiated" phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the development of various lung and cardiovascular diseases such as Chronic Obstructive Pulmonary Disease (COPD). Long non-coding RNAs (lncRNAs) have emerged as key modulators of SMC differentiation and phenotypic changes. In this study, we examined the expression of lncRNAs in primary human pulmonary artery SMCs (hPASMCs) during cell-to-cell contact-induced SMC differentiation. We discovered a novel lncRNA, which we named Differentiation And Growth Arrest-Related lncRNA (DAGAR) that was significantly upregulated in the quiescent phenotype with respect to proliferative SMCs and in cell-cycle-arrested MRC5 lung fibroblasts. We demonstrated that DAGAR expression is essential for SMC quiescence and its knockdown hinders SMC differentiation. The treatment of quiescent SMCs with the pro-inflammatory cytokine Tumor Necrosis Factor (TNF), a known inducer of SMC dedifferentiation and proliferation, elicited DAGAR downregulation. Consistent with this, we observed diminished DAGAR expression in pulmonary arteries from COPD patients compared to non-smoker controls. Through pulldown experiments followed by mass spectrometry analysis, we identified several proteins that interact with DAGAR that are related to cell differentiation, the cell cycle, cytoskeleton organization, iron metabolism, and the N-6-Methyladenosine (m6A) machinery. In conclusion, our findings highlight DAGAR as a novel lncRNA that plays a crucial role in the regulation of cell proliferation and SMC differentiation. This paper underscores the potential significance of DAGAR in SMC and fibroblast physiology in health and disease.


Subject(s)
Cell Differentiation , Cell Proliferation , Fibroblasts , Myocytes, Smooth Muscle , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fibroblasts/metabolism , Cell Differentiation/genetics , Myocytes, Smooth Muscle/metabolism , Cell Proliferation/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Cells, Cultured
7.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125832

ABSTRACT

It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.


Subject(s)
DNA Damage , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , MicroRNAs , PTEN Phosphohydrolase , RNA, Long Noncoding , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Epithelial-Mesenchymal Transition/genetics , Drug Resistance, Neoplasm/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/genetics , Signal Transduction
8.
Article in English | MEDLINE | ID: mdl-39189463

ABSTRACT

Medicinal signaling cells (MSC) hold promise for regenerative medicine due to their ability to repair damaged tissues. However, their effectiveness can be affected by how long they are cultured in the lab. This study investigated how passage number influences key properties for regenerative medicine of pig bone marrow MSC. The medicinal signiling cells derived from pig bone marrow (BM-MSC) were cultured in D-MEM High Glucose supplemented with 15% foetal bovine serum until the 25th passage and assessed their growth, viability, ability to differentiate into different cell types (plasticity), and cell cycle activity. Our findings showed that while the cells remained viable until the 25th passage, their ability to grow and differentiate declined after the 5th passage. Additionally, cells in later passages spent more time in a resting phase, suggesting reduced activity. In conclusion, the number of passages is a critical factor for maintaining ideal MSC characteristics. From the 9th passage BM-MSC exhibit decline in proliferation, differentiation potential, and cell cycle activity. Given this, it is possible to suggest that the use of 5th passage cells is the most suitable for therapeutic applications.

9.
Int J Mol Sci ; 25(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39126055

ABSTRACT

Rasmussen's encephalitis (RE) stands as a rare neurological disorder marked by progressive cerebral hemiatrophy and epilepsy resistant to medical treatment. Despite extensive study, the primary cause of RE remains elusive, while its histopathological features encompass cortical inflammation, neuronal degeneration, and gliosis. The underlying molecular mechanisms driving disease progression remain largely unexplored. In this case study, we present a patient with RE who underwent hemispherotomy and has remained seizure-free for over six months, experiencing gradual motor improvement. Furthermore, we conducted molecular analysis on the excised brain tissue, unveiling a decrease in the expression of cell-cycle-associated genes coupled with elevated levels of BDNF and TNF-α proteins. These findings suggest the potential involvement of cell cycle regulators in the progression of RE.


Subject(s)
Encephalitis , Humans , Encephalitis/genetics , Encephalitis/pathology , Encephalitis/metabolism , Male , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Brain/pathology , Brain/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Cell Cycle/genetics
10.
J Appl Toxicol ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128859

ABSTRACT

Rubus imperialis (Rosaceae) is a Brazilian medicinal plant that already exhibited therapeutical perspectives. However, previous studies revealed cellular and/or genetic toxicity of extracts from aerial parts of this plant, as well as other species of the Rubus genus. Being 2ß,3ß-19α-trihydroxyursolic acid (2B) one of the major compounds of this plant, with proven pharmacological effect, it is important to investigate the biosafety of this isolated compound. Therefore, in the present study, (2B) was tested by several cytogenotoxic endpoints up to 20 µg/ml in human hepatoma HepG2/C3A cells. The test compound did not produce any decreased cell viability, DNA damage, chromosomal mutations, cell cycle changes, or apoptotic effects in the tested cells. Additionally, RT-qPCR analysis revealed the downregulation of CYP3A4 (metabolism), M-TOR (cell death), and CDKN1A (cell cycle) genes. Under the experimental conditions used, the 2B compound did not show cytogenotoxic activity after a single exposure to HepG2/C3A human cells.

11.
Rev Invest Clin ; 76(4): 173-184, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39047236

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is one of the most aggressive cancers worldwide. Curzerene is a sesquiterpene and component of Curcuma rhizomes and has anti-tumor and anti-inflammatory properties. Objective: The study aimed to investigate the effects of curzerene on the malignant phenotypes and tumor growth in HCC. Methods: Various concentrations of curzerene were used to treat human HCC cells (Huh7 and HCCLM3). Cell viability, apoptosis, cell cycle, invasion, and migration were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, Transwell, and wound healing assays. Cell cycle-, apoptosis-, and signaling pathway-related proteins were analyzed by Western blot analysis. A mouse xenograft model was established to analyze the anti-tumor effects of curzerene in vivo. Results: Curzerene repressed the proliferation, invasion, and migration of Huh7 and HCCLM3 cells. Curzerene also induced G2/M cycle arrest and cell apoptosis. Curzerene downregulated the CDK1, cyclin B1, PCNA, Bcl-2, matrix metallopeptidases (MMP)2, and MMP9 protein expression and upregulated the Bax, cleaved caspase3, and cleaved poly ADPribose polymerase protein expression in HCC cells. Curzerene restrained the phosphorylation of PI3K, AKT, and the Mammalian target of rapamycin (mTOR) in Huh7 and HCCLM3 cells. The in vivo data revealed that curzerene inhibited HCC tumor growth and decreased the expression of phosphorylated mTOR in xenograft mouse models. Conclusion: Curzerene inhibited cell malignancy in vitro and tumor growth in vivo in HCC, suggesting that curzerene may be a candidate agent for anti-HCC therapy.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Signal Transduction , Animals , Humans , Male , Mice , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Progression , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sesquiterpenes/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
12.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927713

ABSTRACT

Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.


Subject(s)
Carcinogenesis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Carcinogenesis/genetics , Epithelial-Mesenchymal Transition/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Animals
13.
Toxicol In Vitro ; 99: 105884, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945376

ABSTRACT

Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths globally. Systemic therapy is the only treatment option for HCC at an advanced stage, with limited therapeutic response. In this study, we evaluated the antitumor potential of four N-acylhydrazone (NAH) derivatives, namely LASSBio-1909, 1911, 1935, and 1936, on HCC cell lines. We have previously demonstrated that the aforementioned NAH derivatives selectively inhibit histone deacetylase 6 (HDAC6) in lung cancer cells, but their effects on HCC cells have not been explored. Thus, the present study aimed to evaluate the effects of NAH derivatives on the proliferative behavior of HCC cells. LASSBio-1911 was the most cytotoxic compound against HCC cells, however its effects were minimal on normal cells. Our results showed that LASSBio-1911 inhibited HDAC6 in HCC cells leading to cell cycle arrest and decreased cell proliferation. There was also an increase in the frequency of cells in mitosis onset, which was associated with disturbing mitotic spindle formation. These events were accompanied by elevated levels of CDKN1A mRNA, accumulation of CCNB1 protein, and sustained ERK1 phosphorylation. Furthermore, LASSBio-1911 induced DNA damage, resulting in senescence and/or apoptosis. Our findings indicate that selective inhibition of HDAC6 may provide an effective therapeutic strategy for the treatment of advanced HCC, including tumor subtypes with integrated viral genome. Further, in vivo studies are required to validate the antitumor effect of LASSBio-1911 on liver cancer.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Cellular Senescence , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Hydrazones , Liver Neoplasms , Histone Deacetylase 6/antagonists & inhibitors , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Cell Proliferation/drug effects , Hydrazones/pharmacology , Cellular Senescence/drug effects , Histone Deacetylase Inhibitors/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin B1/metabolism , Cyclin B1/genetics
14.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732206

ABSTRACT

Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 µM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.


Subject(s)
Breast Neoplasms , Cell Cycle Checkpoints , Curcumin , Cyclin-Dependent Kinase Inhibitor p21 , Gene Expression Regulation, Neoplastic , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , MCF-7 Cells , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cell Cycle Checkpoints/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Antineoplastic Agents/pharmacology , GADD45 Proteins
15.
Biol Res ; 57(1): 30, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760850

ABSTRACT

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Subject(s)
Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , MicroRNAs , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Glioma/genetics , Glioma/metabolism , Animals , Mice , Heterografts , Neoplasm Transplantation , Brain Neoplasms/genetics , MicroRNAs/metabolism
16.
Plants (Basel) ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794492

ABSTRACT

Ecuador stands as a nation inheriting a profound ancestral legacy in the utilization of medicinal plants, reflective of the rich biodiversity embraced by various ethnic groups. Despite this heritage, many of these therapeutic resources remain insufficiently explored concerning their toxicity and potential pharmacological effects. This study focused on a comprehensive evaluation of cytotoxicity and the potential subcellular targets within various extracts and nine isolated metabolites from carefully selected medicinal plants. Assessing their impact on the breast cancer cell line (MCF7), we subsequently examined the most active fractions for effects on the cell cycle, microtubule network, centrosome duplication, γH2AX foci, and E-cadherin. The investigated crude extracts and isolated compounds from Ecuadorian medicinal plants demonstrated cytotoxic effects, influencing diverse cellular pathways. These findings lend credence to the traditional uses of Ecuadorian medicinal plants, which have served diverse therapeutic purposes. Moreover, they beckon the exploration of the specific chemicals, whether in isolation or combination, responsible for these observed activities.

17.
J Appl Toxicol ; 44(8): 1129-1138, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38567776

ABSTRACT

Rubus imperialis Chum. Schl. (Rosaceae) have demonstrated some pharmacological activities, including gastroprotective action. However, genotoxic effects of R. imperialis extract was also reported. Since niga-ichigoside F1 (NIF1) is a major compound of this plant species, and which has proven pharmacological properties, it is essential to investigate whether this compound is responsible for the observed toxicity. Therefore, the objective of this study was to analyze the effects of NIF1 on HepG2/C3A cells for possible cytogenotoxicity, cell cycle and apoptosis influence, and expression of genes linked to the DNA damage, cell cycle, cell death, and xenobiotic metabolism. The results showed no cytogenotoxic effects of NIF1 at concentrations between 0.1 and 20 µg/ml. Flow cytometry also showed no cell cycle or apoptosis disturbance. In the gene expression analysis, none of the seven genes investigated showed altered expression. The data indicate that NIF1 has no cytogenotoxic effects, and no interruption of the cell cycle, or induction of apoptosis, apparently not being responsible for the cytotoxic effects observed in the crude extract of R. imperialis.


Subject(s)
Apoptosis , Cell Cycle , Humans , Hep G2 Cells , Apoptosis/drug effects , Cell Cycle/drug effects , Rubus/chemistry , DNA Damage/drug effects , Plant Extracts/toxicity , Plant Extracts/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Saponins/toxicity , Saponins/pharmacology
18.
Biomedicines ; 12(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672246

ABSTRACT

Liver cancer is the second leading cause of cancer-related death in males. It is estimated that approximately one million deaths will occur by 2030 due to hepatic cancer. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer subtype and is commonly diagnosed at an advanced stage. The drug arsenal used in systemic therapy for HCC is very limited. Multikinase inhibitors sorafenib (Nexavar®) and lenvatinib (Lenvima®) have been used as first-line drugs with modest therapeutic effects. In this scenario, it is imperative to search for new therapeutic strategies for HCC. Herein, the antiproliferative activity of N-acylhydrazone derivatives was evaluated on HCC cells (HepG2 and Hep3B), which were chemically planned on the ALL-993 scaffold, a potent inhibitor of vascular endothelial growth factor 2 (VEGFR2). The substances efficiently reduced the viability of HCC cells, and the LASSBio-2052 derivative was the most effective. Further, we demonstrated that LASSBio-2052 treatment induced FOXM1 downregulation, which compromises the transcriptional activation of genes required for G2/M transition, such as AURKA and AURKB, PLK1, and CDK1. In addition, LASSBio-2052 significantly reduced CCNB1 and CCND1 expression in HCC cells. Our findings indicate that LASSBio-2052 is a promising prototype for further in vivo studies.

19.
Cells ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534317

ABSTRACT

Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.


Subject(s)
Mitochondria , Protein Serine-Threonine Kinases , NIMA-Related Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Mitochondria/metabolism , Homeostasis , DNA, Mitochondrial
20.
Cell Calcium ; 119: 102856, 2024 May.
Article in English | MEDLINE | ID: mdl-38408411

ABSTRACT

NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.


Subject(s)
Neoplasms , Neurodegenerative Diseases , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Neurodegenerative Diseases/metabolism , Glutamic Acid/metabolism , Cell Cycle
SELECTION OF CITATIONS
SEARCH DETAIL