Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.135
Filter
1.
Sci Rep ; 14(1): 23533, 2024 10 09.
Article in English | MEDLINE | ID: mdl-39384561

ABSTRACT

Recognition of viral infection often relies on the detection of double-stranded RNA (dsRNA), a process that is conserved in many different organisms. In mammals, proteins such as MDA5, RIG-I, OAS, and PKR detect viral dsRNA, but struggle to differentiate between viral and endogenous dsRNA. This study investigates an shRNA targeting DDX54's potential to activate PKR, a key player in the immune response to dsRNA. Knockdown of DDX54 by a specific shRNA induced robust PKR activation in human cells, even when DDX54 is overexpressed, suggesting an off-target mechanism. Activation of PKR by the shRNA was enhanced by knockdown of ADAR1, a dsRNA binding protein that suppresses PKR activation, indicating a dsRNA-mediated mechanism. In vitro assays confirmed direct PKR activation by the shRNA. These findings emphasize the need for rigorous controls and alternative methods to validate gene function and minimize unintended immune pathway activation.


Subject(s)
RNA, Double-Stranded , RNA, Small Interfering , RNA-Binding Proteins , eIF-2 Kinase , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Humans , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Enzyme Activation , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , HEK293 Cells , Gene Knockdown Techniques
2.
Biol Pharm Bull ; 47(10): 1610-1615, 2024.
Article in English | MEDLINE | ID: mdl-39358240

ABSTRACT

The systemic RNA interference defective 1 (SID-1) family proteins are putative double-stranded RNA (dsRNA) transporters. Two mammalian homologs, SIDT1 and SIDT2 have been linked to many functions such as innate immune responses, microRNA uptake and lysosomal degradation of RNA/DNA whereas Caenorhabditis elegans SID-1 is essential for systemic RNA interference. However, dsRNA uptake mechanism is largely unknown. In this review, we discuss our current understanding of the molecular functions of SID-1 family proteins at a structure level, which highlights recent structural studies.


Subject(s)
Caenorhabditis elegans Proteins , RNA, Double-Stranded , Animals , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Humans , Caenorhabditis elegans/metabolism , RNA Transport , Membrane Proteins
3.
Mol Biol Rep ; 51(1): 981, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269576

ABSTRACT

Papaya ringspot virus (PRSV) is a catastrophic disease that causes huge yield losses in papaya cultivation around the world. Yield losses in severely infected plants can be upto 100%. Because of this disease, papaya cultivation has been shifted to other crops in some areas of the world. Many conventional methods and breeding approaches are used against this disease, which turns out to be less effective. Considering the yield loss caused by PRSV in papaya, it is high time to focus on alternative control methods. To implement effective management strategies, molecular approaches such as Marker Assisted Breeding (MAS) or transgenic methods involving post-transcriptional gene silencing targeting the genome viz., coat protein, replicase gene, or HC Pro can be pursued. However, the public's reluctance to widely accept the transgenic approach due to health and environmental concerns necessitates a consideration of non-transgenic alternatives. Prioritizing safety and ensuring efficient virus control, non-transgenic approaches which encompass cross-protection, genome editing, and topical applications of dsRNA to induce gene silencing within the host, can be adopted. This review aims to provide comprehensive insights of various molecular tools used in managing PRSV which in turn will help in sustainable agriculture.


Subject(s)
Carica , Plant Diseases , Potyvirus , Carica/virology , Carica/genetics , Plant Diseases/virology , Plant Diseases/genetics , Potyvirus/genetics , Potyvirus/pathogenicity , Plants, Genetically Modified/genetics , Plant Breeding/methods , Disease Resistance/genetics , Gene Editing/methods , Capsid Proteins/genetics , Gene Silencing
4.
Plants (Basel) ; 13(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39273974

ABSTRACT

RNA interference (RNAi) is a regulatory and protective mechanism that plays a crucial role in the growth, development, and control of plant responses to pathogens and abiotic stresses. In spray-induced gene silencing (SIGS), exogenous double-stranded RNAs (dsRNA) are used to efficiently regulate target genes via plant surface treatment. In this study, we aimed to evaluate the effect of specific exogenous dsRNAs on silencing different regions (promoter, protein-coding and intron) of the target SlTRY tomato gene, encoding an R3-type MYB repressor of anthocyanin biosynthesis. We also assessed the impact of targeting different SlTRY regions on the expression of genes involved in anthocyanin and flavonoid biosynthesis. This study demonstrated the critical importance of selecting the appropriate gene target region for dsRNA action. The highest inhibition of the SlTRY gene expression and activation of anthocyanin biosynthesis was achieved by dsRNA complementary to the protein-coding region of SlTRY gene, compared with dsRNAs targeting the SlTRY promoter or intron regions. Silencing the SlTRY gene increased the content of anthocyanins and boosted levels of other substances in the phenylpropanoid pathway, such as caffeoyl putrescine, chlorogenic acid, ferulic acid glucoside, feruloyl quinic acid, and rutin. This study is the first to examine the effects of four different dsRNAs targeting various regions of the SlTRY gene, an important negative regulator of anthocyanin biosynthesis.

5.
Int J Biol Macromol ; 279(Pt 4): 135525, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260650

ABSTRACT

E26-transforming specific (ETS) variant 6 (ETV6) is a transcription factor regulating the expression of interferon stimulating genes (ISGs) and involved in the embryonic development and hematopoietic regulation, but the role of ETV6 in host response to virus infection is not clear. In this study, we show that ETV6 was upregulated in DF-1 cells with poly(I:C) stimulation or IBDV, AIV and ARV infection via engagement of dsRNA by MDA5. Overexpression of ETV6 in DF-1 cells markedly inhibited IBDV-induced type I interferon (IFN-I) and ISGs expressions. In contrast, knockdown, or knockout of ETV6 remarkably inhibited IBDV replication via promoting IFN-I response. Furthermore, our data show that ETV6 negatively regulated host antiviral response to IBDV infection by interaction with TANK binding kinase 1 (TBK1) and subsequently inhibited its phosphorylation. These results uncovered a novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation, furthering our understandings of RNA virus immunosuppression and providing a valuable clue to the development of antiviral reagents for the control of avian RNA virus infection.

6.
Pharmaceutics ; 16(9)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39339263

ABSTRACT

Background: In vitro-transcribed (IVT) mRNA has been established as a promising platform for therapeutics and vaccine development. Double-stranded RNA (dsRNA) is a major impurity of IVT mRNA and can trigger unfavored immune responses, potentially causing adverse events in patients. Existing dsRNA detection and quantitation methods, such as gel electrophoresis, ELISA, or homogeneous time-resolved fluorescence (HTRF), have low sensitivity or are time-consuming. A recently published lateral flow immunoassay (LFSA) was shown to be fast, but it lacks the sensitivity for dsRNA with uridine modifications. Methods: In this study, we provided a possible explanation for the reduced sensitivity of existing quantitation methods for dsRNA with modified uridines by characterizing the binding affinities of commonly used anti-dsRNA antibodies. Then, a rapid and sensitive biolayer interferometry (BLI) dsRNA detection assay utilizing Flock House Virus (FHV) B2 protein was developed to overcome the challenges in dsRNA detection and the reduced sensitivity. Results: This assay allows the detection of dsRNA with different uridine modifications (ψ, m1ψ, 5 moU) with similar sensitivity as dsRNA without modification. Furthermore, we demonstrated this method can be used to quantify both short and long dsRNA, as well as hairpin-structured dsRNA, providing a more comprehensive detection for dsRNA impurities. Moreover, we applied this assay to monitor dsRNA removal through a purification process. Conclusions: Taken together, this BLI method could enable real-time monitoring of impurities in IVT mRNA production to prevent immunogenicity stemming from dsRNA.

7.
Insects ; 15(9)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39336685

ABSTRACT

Ceratitis capitata, known as the Mediterranean fruit fly (Medfly), is a major dipteran pest significantly impacting fruit and vegetable farming. Currently, its control heavily relies mainly on chemical insecticides, which pose health risks and have effects on pollinators. A more sustainable and species-specific alternative strategy may be based on double-stranded RNA (dsRNA) delivery through feeding to disrupt essential functions in pest insects, which is poorly reported in dipteran species. Previous reports in Orthoptera and Coleoptera species suggested that dsRNA degradation by specific nucleases in the intestinal lumen is among the major obstacles to feeding-mediated RNAi in insects. In our study, we experimented with three-day adult feeding using a combination of dsRNA molecules that target the expression of the ATPase vital gene and two intestinal dsRNA nucleases. These dsRNA molecules were recently tested separately in two Tephritidae species, showing limited effectiveness. In contrast, by simultaneously feeding dsRNA against the CcVha68-1, CcdsRNase1, and CcdsRNase2 genes, we observed 79% mortality over seven days, which was associated with a decrease in mRNA levels of the three targeted genes. As expected, we also observed a reduction in dsRNA degradation following RNAi against nucleases. This research illustrates the potential of utilizing molecules as pesticides to achieve mortality rates in Medfly adults by targeting crucial genes and intestinal nucleases. Furthermore, it underscores the importance of exploring RNAi-based approaches for pest management.

8.
Yeast ; 41(10): 629-640, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39345013

ABSTRACT

Saccharomyces cerevisiae is an excellent model to study the effect of external cues on cell division and stress response. 5-Fluorocuracil (5-FU) has been used to treat solid tumors since several decades. The drug was initially designed to interfere with DNA replication but was later found to exert its antiproliferative effect also via RNA-dependent processes. Since 5-FU inhibits the activity of the 3'-5'-exoribonuclease Rrp6 in yeast and mammals, earlier work has compared the effect of 5-FU treatment and RRP6 deletion at the transcriptome level in diploid synchronized yeast cells. To facilitate interpreting the expression data we have developed an improved 5-Fluorouracil RNA (5-FUR) expression viewer. Users can access information via genome coordinates and systematic or standard names for mRNAs and Xrn1-dependent-, stable-, cryptic-, and meiotic unannotated transcripts (XUTs, SUTs, CUTs, and MUTs). Normalized log2-transformed or linear data can be displayed as filled diagrams, line graphs or color-coded heatmaps. The expression data are useful for researchers interested in processes such as cell cycle regulation, mitotic repression of meiotic genes, the effect of 5-FU treatment and Rrp6 deficiency on the transcriptome and expression profiles of sense/antisense loci that encode overlapping transcripts. The viewer is accessible at http://5fur.genouest.org.


Subject(s)
Fluorouracil , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Fluorouracil/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Gene Deletion , Transcriptome , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Gene Expression Profiling , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Pathogens ; 13(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39338924

ABSTRACT

Trichomonas vaginalis (Tvag) is a sexually transmitted human pathogen that is commonly infected with strains of one or more of five known species of Trichomonas vaginalis viruses (TVVs), members of genus Trichomonasvirus. TVVs are thought not to have an extracellular phase to their lifecycle and instead to be transmitted vertically from mother to daughter cells. As a result, generation of isogenic virus-positive and virus-negative sets of Tvag clones has been a major barrier to studying interactions between TVVs and their host. Nucleoside analog 2'-C-methylcytidine (2CMC) has been recently reported to clear trichomonads of infections with TVV1, TVV2, and TVV3. We used 2CMC to treat a panel of Tvag isolates that collectively harbor at least one representative strain of each TVV species and thereby provided evidence that infections with TVV4 and TVV5 can also be cleared by 2CMC. Furthermore, our results suggest a newly identified difference in drug susceptibility between TVV species. We took advantage of these susceptibility difference to generate isogenic sets of Tvag clones harboring different combinations of the five TVV species. These results provide both new insight into differences between these species and new avenues for generating tools to study the potential roles of TVVs in Tvag biology.

10.
Biochem Biophys Res Commun ; 733: 150725, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39317111

ABSTRACT

Junctophilin-2 (JPH2) is traditionally recognized as a cardiomyocyte-enriched structural protein that anchors the junction between the plasma membrane and the endo/sarcoplasmic reticulum, facilitating excitation-induced cardiac contraction. In this study, we uncover a novel function of JPH2 as a double-stranded RNA (dsRNA)-binding protein, which forms complexes with dsRNA both in vitro and in cells. Stimulation by cytosolic dsRNA enhances the interaction of JPH2 with the dsRNA sensor MDA5. Notably, JPH2 inhibits MDA5's binding to its dsRNA ligand, likely by sequestering the dsRNA. Silencing JPH2 in cardiomyocytes increased the interaction between MDA5 and its dsRNA ligands, activated the MAVS/TBK1 signaling, and triggered spontaneous interferon-beta (IFNb1) production in the absence of foreign pathogen. Mouse hearts deficient in JPH2 exhibited upregulation of innate immune signaling cascade. Collectively, these findings identify JPH2 as a regulator of dsRNA sensing and highlight its role in suppressing the automatic activation of innate immune responses in cardiomyocytes, suggesting the cytosolic surface of the endo/sarcoplasmic reticulum as a hub for dsRNA sequestration.


Subject(s)
Immunity, Innate , Membrane Proteins , Myocytes, Cardiac , RNA, Double-Stranded , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/immunology , RNA, Double-Stranded/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Mice, Inbred C57BL , Signal Transduction , HEK293 Cells , Interferon-beta/metabolism , Interferon-beta/immunology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Muscle Proteins
11.
Am J Hum Genet ; 111(10): 2176-2189, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39265574

ABSTRACT

We previously identified a homozygous Alu insertion variant (Alu_Ins) in the 3'-untranslated region (3'-UTR) of SPINK1 as the cause of severe infantile isolated exocrine pancreatic insufficiency. Although we established that Alu_Ins leads to the complete loss of SPINK1 mRNA expression, the precise mechanisms remained elusive. Here, we aimed to elucidate these mechanisms through a hypothesis-driven approach. Initially, we speculated that, owing to its particular location, Alu_Ins could independently disrupt mRNA 3' end formation and/or affect other post-transcriptional processes such as nuclear export and translation. However, employing a 3'-UTR luciferase reporter assay, Alu_Ins was found to result in only an ∼50% reduction in luciferase activity compared to wild type, which is insufficient to account for the severe pancreatic deficiency in the Alu_Ins homozygote. We then postulated that double-stranded RNA (dsRNA) structures formed between Alu elements, an upstream mechanism regulating gene expression, might be responsible. Using RepeatMasker, we identified two Alu elements within SPINK1's third intron, both oriented oppositely to Alu_Ins. Through RNAfold predictions and full-length gene expression assays, we investigated orientation-dependent interactions between these Alu repeats. We provide compelling evidence to link the detrimental effect of Alu_Ins to extensive dsRNA structures formed between Alu_Ins and pre-existing intronic Alu sequences, including the restoration of SPINK1 mRNA expression by aligning all three Alu elements in the same orientation. Given the widespread presence of Alu elements in the human genome and the potential for new Alu insertions at almost any locus, our findings have important implications for detecting and interpreting Alu insertions in disease genes.


Subject(s)
3' Untranslated Regions , Alu Elements , RNA, Double-Stranded , Alu Elements/genetics , Humans , RNA, Double-Stranded/genetics , 3' Untranslated Regions/genetics , Introns/genetics , Mutagenesis, Insertional/genetics , Homozygote , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
J Nanobiotechnology ; 22(1): 544, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39237945

ABSTRACT

Piercing-sucking pests are the most notorious group of pests for global agriculture. RNAi-mediated crop protection by foliar application is a promising approach in field trials. However, the effect of this approach on piercing-sucking pests is far from satisfactory due to the limited uptake and transport of double strand RNA (dsRNA) in plants. Therefore, there is an urgent need for more feasible and biocompatible dsRNA delivery approaches to better control piercing-sucking pests. Here, we report that foliar application of layered double hydroxide (LDH)-loaded dsRNA can effectively disrupt Panonychus citri at multiple developmental stages. MgAl-LDH-dsRNA targeting Chitinase (Chit) gene significantly promoted the RNAi efficiency and then increased the mortality of P. citri nymphs by enhancing dsRNA stability in gut, promoting the adhesion of dsRNA onto leaf surface, facilitating dsRNA internalization into leaf cells, and delivering dsRNA from the stem to the leaf via the vascular system of pomelo plants. Finally, this delivery pathway based on other metal elements such as iron (MgFe-LDH) was also found to significantly improve the protection against P. citri and the nymphs or larvae of Diaphorina citri and Aphis gossypii, two other important piercing-sucking hemipeteran pests, indicating the universality of nanoparticles LDH in promoting the RNAi efficiency and mortality of piercing-sucking pests. Collectively, this study provides insights into the synergistic mechanism for nano-dsRNA systemic translocation in plants, and proposes a potential eco-friendly control strategy for piercing-sucking pests.


Subject(s)
Hydroxides , RNA Interference , RNA, Double-Stranded , Animals , Hydroxides/chemistry , Hydroxides/pharmacology , Nanoparticles/chemistry , Nymph , Hemiptera , Plant Leaves , Larva , Chitinases/metabolism , Chitinases/genetics , Citrus
13.
J Biomed Mater Res B Appl Biomater ; 112(10): e35487, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39318330

ABSTRACT

Long double-stranded (ds)RNA, a potent stimulator of type I interferon and the innate immune response. In the present study, we demonstrated, for the first time, the efficacy of cationic polystyrene latex nanostructures (clNPs) as a dsRNA carrier, improving cellular delivery and robustly potentiating the immunostimulatory capacity of dsRNA in the ovarian cancer cell line SKOV3. The clNPs complexed with an in vitro transcribed dsRNA molecule, were bound by SKOV3 cells, and had increased cellular association compared to uncomplexed clNPs. clNPs complexed with dsRNA induced a more robust innate immune response compared to dsRNA alone. Transcript expression of two interferon-stimulated genes, were increased 47- and 108-fold over dsRNA and induced a significant antiviral state against vesicular-stomatitis virus, resulting in a 3.3-fold improvement on the efficacy of dsRNA. These data highlight the potential of polystyrene latex nanostructures as dsRNA carriers for anticancer immunotherapies, improving the uptake and efficacy of the nucleic acid.


Subject(s)
Ovarian Neoplasms , Polystyrenes , RNA, Double-Stranded , Female , Polystyrenes/chemistry , Polystyrenes/pharmacology , Humans , Ovarian Neoplasms/pathology , Cell Line, Tumor , RNA, Double-Stranded/chemistry , Latex/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacology , Cations/chemistry , Nanoparticles/chemistry
14.
Clin Transl Med ; 14(9): e70027, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39313944

ABSTRACT

BACKGROUND: Uncontrolled inflammation caused by macrophages and monocytes plays a crucial role in worsening acute respiratory distress syndrome (ARDS). Previous studies have highlighted the importance of IFIH1 in regulating macrophage polarisation in ARDS triggered by pneumonia. However, the mechanisms by which IFIH1 is activated in ARDS remain unclear. METHODS: In this study, we utilised multiomics sequencing and molecular interaction experiments to explore the molecular mechanisms underlying IFIH1 activation in ARDS. Through the use of conditional gene knockout mice and primary cells, we demonstrated the significant role of these mechanisms in the development of ARDS. Additionally, we validated the associations between these mechanisms and ARDS by quantitative PCR analysis of CD14+ cells obtained from the peripheral blood of 140 ARDS patients. RESULTS: Our investigation revealed that lipopolysaccharide, a critical component derived from Gram-negative bacteria, activated IFIH1 by upregulating a novel transcript known as IFIH1-binding RNA1 (IBR1) in monocytes and macrophages. Specifically, as an endogenous double-stranded RNA, IBR1 bind to the helicase domain of IFIH1 because of its unique double-stranded structure. Deletion of IBR1 significantly reduced the activation of IFIH1, M1 polarisation of macrophages, and inflammatory lung injury in ARDS. Moreover, IBR1 directly induced M1 polarisation of macrophages and ARDS, whereas deletion of IFIH1 inhibited IBR1-induced macrophage M1 polarisation and inflammatory lung injury. Importantly, we observed a notable increase in IBR1 expression in ARDS patients with pneumonia caused by Gram-negative bacteria. Furthermore, we demonstrated that the delivery of IFIH1 mutants through exosomes effectively counteracted IBR1, thereby reducing pulmonary inflammation and alleviating lung injury. CONCLUSIONS: This study revealed a novel mechanism involving IBR1, an endogenous double-stranded RNA (dsRNA) that binds to IFIH1, shedding light on the complex process of macrophage polarisation in ARDS. The administration of IFIH1 variants has the potential to eliminate pulmonary dsRNA and alleviate inflammatory lung injury in ARDS. HIGHLIGHTS: In monocytes and macrophages, the endogenous double-stranded RNA, IFIH1-binding RNA 1 (IBR1), binds to the helicase domain of IFIH1 because of its unique double-stranded structure. IBR1 plays a significant role in macrophage polarisation and the development of acute respiratory distress syndrome (ARDS) induced by Gram-negative bacteria or lipopolysaccharide (LPS). Administration of IFIH1 variants has potential for eliminating pulmonary IBR1 and reducing inflammatory lung injury in ARDS patients.


Subject(s)
Interferon-Induced Helicase, IFIH1 , Macrophages , RNA, Double-Stranded , Respiratory Distress Syndrome , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/immunology , Humans , Animals , Macrophages/metabolism , Mice , RNA, Double-Stranded/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Mice, Knockout , Male , Female
15.
J Exp Bot ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39289888

ABSTRACT

Holoparasites of the Orobanchaceae family are devastating pests causing severe damage to many crop species and are nearly impossible to control with conventional methods. During past decades RNA interference (RNAi) has been seen as a promising approach to control various crop pests. The exchange of small RNAs (sRNAs) between crops and parasitic plants has been documented indicating a potential for the development of methods to protect them via the delivery of the sRNAs to parasites, called host-induced gene silencing (HIGS). Here we describe various approaches used for gene silencing in plants and suggest solutions to improve the long-distance movement of the silencing triggers to elevate the HIGS efficiency in parasitic plants. We also investigate the important biological processes during parasites life cycle with a focus on broomrape species, providing several appropriate target genes that can be used in, especially, multiplex gene silencing experiments. We also touch on how the application of nanoparticles can improve the stability and delivery of the silencing triggers, highlighting its potential for parasitic plants control. Finally, suggestions for further research and possible directions for RNAi in parasitic plants are provided.

16.
Vaccines (Basel) ; 12(8)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39204025

ABSTRACT

The rise of mRNA as a novel vaccination strategy presents new opportunities to confront global disease. Double-stranded RNA (dsRNA) is an impurity byproduct of the in vitro transcription reaction used to manufacture mRNA that may affect the potency and safety of the mRNA vaccine in patients. Careful quantitation of dsRNA during manufacturing is critical to ensure that residual dsRNA is minimized in purified mRNA drug substances. In this work, we describe the development and implementation of a sandwich Enzyme-Linked Immunosorbent Assay (ELISA) to quantitate nanogram quantities of residual dsRNA contaminants in mRNA process intermediates using readily available commercial reagents. This sandwich ELISA developed in this study follows a standard protocol and can be easily adapted to most research laboratory environments. Additionally, a liquid handler coupled with an automated robotics system was utilized to increase assay throughput, improve precision, and reduce the analyst time requirement. The final automated sandwich ELISA was able to measure <10 ng/mL of dsRNA with a specificity for dsRNA over 2000-fold higher than mRNA, a variability of <15%, and a throughput of 72 samples per day.

17.
Plants (Basel) ; 13(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39204771

ABSTRACT

The application of double-stranded RNAs (dsRNAs) to plant surfaces has emerged as a promising tool for manipulating gene expression in plants and pathogens, offering new opportunities for crop improvement. While research has shown the capability of exogenous dsRNAs to silence genes, the full spectrum of their impact, particularly on the intricate network of microRNAs (miRNAs), remains largely unexplored. Here, we show that the exogenous application of chalcone synthase (CHS)-encoding dsRNA to the rosette leaves of Arabidopsis thaliana induced extensive alterations in the miRNA profile, while non-specific bacterial neomycin phosphotransferase II (NPTII) dsRNA had a minimal effect. Two days after treatment, we detected 60 differentially expressed miRNAs among the 428 miRNAs found in the A. thaliana genome. A total of 59 miRNAs were significantly changed after AtCHS-dsRNA treatment compared with water and NPTII-dsRNA, and 1 miRNA was significantly changed after AtCHS-dsRNA and NPTII-dsRNA compared with the water control. A comprehensive functional enrichment analysis revealed 17 major GO categories enriched among the genes potentially targeted by the up- and downregulated miRNAs. These categories included processes such as aromatic compound biosynthesis (a pathway directly related to CHS activity), heterocycle biosynthesis, RNA metabolism and biosynthesis, DNA transcription, and plant development. Several predicted targets of upregulated and downregulated miRNAs, including APETALA2, SCL27, SOD1, GRF1, AGO2, PHB, and PHV, were verified by qRT-PCR. The analysis showed a negative correlation between the expression of miRNAs and the expression of their predicted targets. Thus, exogenous plant gene-specific dsRNAs induce substantial changes in the plant miRNA composition, ultimately affecting the expression of a wide range of genes. These findings have profound implications for our understanding of the effects of exogenously induced RNA interference, which can have broader effects beyond targeted mRNA degradation, affecting the expression of other genes through miRNA regulation.

18.
Sci Total Environ ; 950: 175311, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39122031

ABSTRACT

RNA interference (RNAi) technology has emerged as a pivotal strategy in sustainable pest management, offering a targeted approach that significantly mitigates the environmental and health risks associated with traditional insecticides. Originally implemented through genetically modified organisms (GMOs) to produce specific RNAi constructs, the technology has evolved in response to public and regulatory concerns over GMOs. This evolution has spurred the development of non-transgenic RNAi applications such as spray-induced gene silencing (SIGS), which employs double-stranded RNA (dsRNA) to silence pest genes directly without altering the plant's genetic makeup. Despite its advantages in specificity and reduced ecological footprint, SIGS faces significant obstacles, particularly the instability of dsRNA in field conditions, which limits its practical efficacy. To overcome these limitations, innovative delivery mechanisms have been developed. These include nanotechnology-based systems, minicells, and nanovesicles, which are designed to protect dsRNA from degradation and enhance its delivery to target organisms. While these advancements have improved the stability and application efficiency of dsRNA, comprehensive assessments of their environmental safety and the potential for increased exposure risks to non-target organisms remain incomplete. This comprehensive review aims to elucidate the environmental fate of dsRNA and evaluate the potential risks associated with its widespread application on non-target organisms, encompassing soil microorganisms, beneficial insects, host plants, and mammals. The objective is to establish a more refined framework for RNAi risk assessment within environmental and ecotoxicological contexts, thereby fostering the development of safer, non-transgenic RNAi-based pest control strategies.


Subject(s)
RNA Interference , RNA, Double-Stranded , Ecotoxicology , Animals , Plants, Genetically Modified , Gene Silencing
19.
J Mol Graph Model ; 132: 108835, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39106629

ABSTRACT

MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression. Despite their relatively short length (about 21 nucleotides), they can regulate thousands of transcripts within a cell. Due to their low complementarity to targets, studying their activity and binding region preferences (3'UTR, 5'UTR, or CDS) is challenging. In this paper, we analyzed a set of human miRNAs to uncover their general patterns. We began with a sequence logo to verify conservation at specific positions. To discover long-range correlations, we employed chaos game representation (CGR) and genomatrix, methods that enable both graphical and analytical analysis of sequence sets and are well-established in bioinformatics. Our results showed that miRNAs exhibit strongly non-random and characteristic patterns. To incorporate physicochemical properties into the analysis, we applied the electron-ion interaction potential (EIIP) parameter. An important part of our study was to validate the division of miRNAs into two parts-seed and puzzle. The seed region is responsible for target binding, while the puzzle region likely interacts with the RISC complex. We estimated duplex binding energy within the 3'UTR, 5'UTR, and CDS regions using the miRanda tool. Based on the median energy distribution, we divided the miRNAs into two subsets, reflecting different patterns in chaos game representation. Interestingly, one subset displayed significant similarity to conserved and highly confidential miRNAs. Our results confirm the low complementarity of miRNA/mRNA interactions and support the functional division of miRNA structure. Additionally, we present findings related to the localization of transcript target sites, which form the basis for further analyses.


Subject(s)
3' Untranslated Regions , MicroRNAs , MicroRNAs/genetics , MicroRNAs/chemistry , Humans , 5' Untranslated Regions , Computational Biology/methods , Thermodynamics , Base Sequence , Binding Sites
20.
Article in English | MEDLINE | ID: mdl-39152090

ABSTRACT

Producing double-stranded RNA (dsRNA) represents a bottleneck for the adoption of RNA interference technology in agriculture, and the main hurdles are related to increases in dsRNA yield, production efficiency, and purity. Therefore, this study aimed to optimize dsRNA production in E. coli HT115 (DE3) using an in vivo system. To this end, we designed a new vector, pCloneVR_2, which resulted in the efficient production of dsRNA in E. coli HT115 (DE3). We performed optimizations in the culture medium and expression inducer in the fermentation of E. coli HT115 (DE3) for the production of dsRNA. Notably, the variable that had the greatest effect on dsRNA yield was cultivation in TB medium, which resulted in a 118% increase in yield. Furthermore, lactose induction (6 g/L) yielded 10 times more than IPTG. Additionally, our optimized up-scaled protocol of the TRIzol™ extraction method was efficient for obtaining high-quality and pure dsRNA. Finally, our optimized protocol achieved an average yield of 53.3 µg/mL after the production and purification of different dsRNAs, reducing production costs by 72%.


Subject(s)
Culture Media , Escherichia coli , Fermentation , RNA, Double-Stranded , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Double-Stranded/genetics , Culture Media/chemistry , Genetic Vectors , Metabolic Engineering/methods , RNA Interference , Lactose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL