Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Nutr ; 11: 1168715, 2024.
Article in English | MEDLINE | ID: mdl-38633601

ABSTRACT

Background: Dietary composition can modify gene expression, favoring the development of chronic diseases via epigenetic mechanisms. Objective: Our study aimed to investigate the relationship between dietary patterns and NR3C1 gene methylation in users of the Brazilian Public Unified Health System (SUS). Methods: We recruited 250 adult volunteers and evaluated their socioeconomic status, psychosocial characteristics, lifestyle, and anthropometrics. Peripheral blood was collected and evaluated for cortisol levels, glycemia, lipid profile, and insulin resistance; methylation of CpGs 40-47 of the 1F region of the NR3C1 gene was also measured. Factors associated with degree of methylation were evaluated using generalized linear models (p < 0.05). Lifestyle variables and health variables were included as confounding factors. Results: The findings of our cross-sectional study indicated an association between NR3C1 DNA methylation and intake of processed foods. We also observed relevant associations of average NR3C1 DNA across the segment analyzed, methylation in component 1 (40-43), and methylation in component 2 (44-47) with a pattern of consumption of industrialized products in relation to BMI, serum cortisol levels, and lipid profile. These results may indicate a relationship between methylation and metabolic changes related to the stress response. Conclusion: These findings suggest an association of methylation and metabolic alterations with stress response. In addition, the present study highlights the significant role of diet quality as a stress-inducing factor that influences NR3C1 methylation. This relationship is further linked to changes in psychosocial factors, lifestyle choices, and cardiometabolic variables, including glucose levels, insulin resistance, and hyperlipidemia.

2.
Acta Diabetol ; 61(1): 1-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37660305

ABSTRACT

Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.


Subject(s)
Diabetes, Gestational , Pregnancy , Female , Humans , Obesity/complications , Pregnancy Trimester, Third , Glucose , Epigenesis, Genetic
3.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206710

ABSTRACT

Astrocytes are a specific type of neuroglial cells that confer metabolic and structural support to neurons. Astrocytes populate all regions of the nervous system and adopt a variety of phenotypes depending on their location and their respective functions, which are also pleiotropic in nature. For example, astrocytes adapt to pathological conditions with a specific cellular response known as reactive astrogliosis, which includes extensive phenotypic and transcriptional changes. Reactive astrocytes may lose some of their homeostatic functions and gain protective or detrimental properties with great impact on damage propagation. Different astrocyte subpopulations seemingly coexist in reactive astrogliosis, however, the source of such heterogeneity is not completely understood. Altered cellular signaling in pathological compared to healthy conditions might be one source fueling astrocyte heterogeneity. Moreover, diversity might also be encoded cell-autonomously, for example as a result of astrocyte subtype specification during development. We hypothesize and propose here that elucidating the epigenetic signature underlying the phenotype of each astrocyte subtype is of high relevance to understand another regulative layer of astrocyte heterogeneity, in general as well as after injury or as a result of other pathological conditions. High resolution methods should allow enlightening diverse cell states and subtypes of astrocyte, their adaptation to pathological conditions and ultimately allow controlling and manipulating astrocyte functions in disease states. Here, we review novel literature reporting on astrocyte diversity from a developmental perspective and we focus on epigenetic signatures that might account for cell type specification.


Subject(s)
Astrocytes/metabolism , Epigenesis, Genetic , Gliosis/genetics , Animals , Astrocytes/cytology , Astrocytes/pathology , Cell Differentiation , Gliosis/metabolism , Humans
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166214, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34271118

ABSTRACT

Interactions between the environment, parasites, vectors, and/or intermediate hosts are complex and involve several factors that define the success or failure of an infection. Among these interactions that can affect infections by a parasite, it is possible to highlight the genetic and epigenetic mechanisms in hosts and parasites. The interaction between genetics, epigenetics, infection, and the host's internal and external environment is decisive and dictates the outcome of a parasitic infection and the resistance, susceptibility, and transmission of this parasite. Epigenetic changes become important mediators in the regulation of gene expression, allowing the evasion of the parasite to immune host barriers, its transmission to new hosts, and the end of its development cycle. Epigenetics is a new frontier in the understanding of the interaction mechanisms between parasite and host that, along with information from the gene regions associated with complex phenotypic variations, the Quantitative Trait Loci, brings new possibilities to investigate more modern and efficient approaches to the treatment, control, and eradication of parasitic diseases. In this brief review, a general overview of the use of epigenetic information and mapping of Quantitative Trait Loci was summarized, both in genes of parasites and hosts, for understanding the mechanisms of resistance and/or susceptibility in parasitic relationships; also, the main search platforms were quantitatively compared, aiming to facilitate access data produced over a period of twenty years.


Subject(s)
Epigenesis, Genetic , Host-Parasite Interactions/genetics , Parasitic Diseases/genetics , Quantitative Trait Loci , Animals , Animals, Genetically Modified , Disease Models, Animal , Disease Resistance , Genetic Predisposition to Disease , Humans , Parasitic Diseases/parasitology
5.
Nutrients ; 13(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668787

ABSTRACT

Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.


Subject(s)
Epigenesis, Genetic/immunology , Hypersensitivity , Infant Nutritional Physiological Phenomena , Maternal Nutritional Physiological Phenomena , Female , Humans , Infant, Newborn , Pregnancy
6.
Int J Mol Sci ; 20(22)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766160

ABSTRACT

The complex physiology of eukaryotic cells is regulated through numerous mechanisms, including epigenetic changes and posttranslational modifications. The wide-ranging diversity of these mechanisms constitutes a way of dynamic regulation of the functionality of proteins, their activity, and their subcellular localization as well as modulation of the differential expression of genes in response to external and internal stimuli that allow an organism to respond or adapt to accordingly. However, alterations in these mechanisms have been evidenced in several autoimmune diseases, including systemic lupus erythematosus (SLE). The present review aims to provide an approach to the current knowledge of the implications of these mechanisms in SLE pathophysiology.


Subject(s)
Epigenesis, Genetic , Lupus Erythematosus, Systemic/genetics , Protein Processing, Post-Translational , Acetylation , Animals , Glycosylation , Humans , Hydroxylation , Lupus Erythematosus, Systemic/metabolism , Phosphorylation
7.
Environ Toxicol Pharmacol ; 67: 79-86, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30769280

ABSTRACT

The aim of this research was to investigate circulating expression levels of three miRNAs (miR-126, miR-155, and miR-145) proposed as predictive CVD biomarkers in Mexican women exposed to inorganic arsenic via drinking water. Mean UAs concentration of 19.5 ± 14.0 µg/g creatinine was found after urine samples were analyzed (n = 105). Significant associations between UAs levels and serum expression levels of miR-155 (p < 0.05) and miR-126 (p < 0.05) were observed after adjustment for assessed co-variables. Alterations in the serum expression levels of miR-155 and miR-126 may be associated with the onset and development of cardiovascular diseases, hence miRNAs could be proposed as prognostic CVD biomarkers. Data found in this study are of concern and risk reduction plans are necessary for the assessed communities to prevent cardiovascular events in this population of women.


Subject(s)
Arsenic/urine , Environmental Exposure/analysis , MicroRNAs/blood , Water Pollutants, Chemical/urine , Adult , Biomarkers/blood , Cardiovascular Diseases , Drinking Water , Female , Humans , Mexico , Middle Aged , Risk Factors
8.
Fertil Steril ; 110(3): 476-485.e1, 2018 08.
Article in English | MEDLINE | ID: mdl-30098699

ABSTRACT

OBJECTIVE: To analyze whether telomere length, X-chromosome inactivation (XCI), and androgen receptor (AR) GAG polymorphism are related to idiopathic premature ovarian insufficiency (POI). DESIGN: Case-control study. SETTING: University hospital. PATIENT(S): A total of 121 women, including 46 nonsyndromic POI and 75 controls. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Age, weight, height, body mass index (BMI), systolic and diastolic arterial pressure, E2, androstenedione, T, and C-reactive protein were assessed. Telomere length was estimated by quantitative real-time polymerase chain reaction, XCI was measured using the Human Androgen Receptor and X-linked retinitis pigmentosa 2 (RP2) methylation assays. AR and FMR1 polymorphism was assessed by quantitative fluorescent polymerase chain reaction and sequencing. RESULT(S): Premature ovarian insufficiency women had a higher mean age, weighed less, and exhibited lower C-reactive protein, E2, and androstenedione levels. The AR polymorphism did not differ between the groups. Four patients had premutation (55-200 CGG repeats), and none displayed a full mutation in the FMR1 gene. However, patients with POI showed shorter telomere length and higher frequency of skewed XCI. Extreme skewing (≥90%) was observed in 15% of women with POI, and shorter telomeres correlated with XCI skewing in both groups. CONCLUSION(S): Skewed XCI and shortened telomere length were associated with idiopathic POI, despite no alterations in the AR and FMR1 genes. Additionally, there is a tendency for women with short telomeres to exhibit skewed XCI.


Subject(s)
Primary Ovarian Insufficiency/diagnosis , Primary Ovarian Insufficiency/genetics , Telomere Shortening/genetics , Telomere/genetics , X Chromosome Inactivation/genetics , Adolescent , Adult , Case-Control Studies , Female , Fragile X Mental Retardation Protein/genetics , Humans , Prospective Studies , Receptors, Androgen/genetics , Young Adult
9.
Curr Pharm Des ; 24(40): 4779-4793, 2018.
Article in English | MEDLINE | ID: mdl-30652644

ABSTRACT

BACKGROUND: Sulforaphane (SF, 1-isothiocyanato-4-(methyl-sulfinyl)-butane) is found in broccoli, cabbage and cauliflower. METHODS: we performed a critical review on the antioxidative, chemopreventive and antitumor effects of SF from cruciferous vegetables against prostate cancers and molecular pathways. For a complete and reliable review, primary and secondary resources were used, including original and review articles, books and government documents published until March 2018. Articles that are in duplicity and disconnected are not considered for review. SF is derived from glucoraphanin (4-methyl-sulfinyl-butyl-glucosinate), being one of the most commonly found isothiocyanates in vegetables from Brassica spp., especially in broccoli samples. In vitro studies indicate that SF induces apoptosis in a dependent or non-dependent method of androgens by transcription of tumor suppressor genes, oxidation response and higher expression of phase II enzymes in prostate cancer cells. Sulforaphane also decreases transcription of the nuclear factor kB and antiapoptotic proteins, expression of cyclin D2 and survivin and DNA synthesis, increases Nrf2 gene activity, interferes with genome compacting by inhibition of histone deacetylases and disrupts Hsp90 complexes, which cause cell cycle arrest, mitosis interruption, activation of caspases and mitochondria depolarization. CONCLUSION: SF and cruciferous vegetables play antioxidative and chemopreventive role, delaying or blocking in vivo carcinogenesis, causing biochemical and epigenetic changes, preventing, delaying, or reversing preneoplastic or advanced prostate lesions, and frequently activating tumor cell death by intrinsic methods of apoptosis. These outcomes encourage the consumption of Brassica specimens, which could be easily achieved by the incorporation of food and vegetables rich in cruciferous isothiocyanates in the diet.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Antioxidants/therapeutic use , Brassicaceae/chemistry , Functional Food , Isothiocyanates/therapeutic use , Prostatic Neoplasms/drug therapy , Vegetables/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Humans , Isothiocyanates/chemistry , Male , Sulfoxides
10.
Adv Exp Med Biol ; 1015: 97-116, 2017.
Article in English | MEDLINE | ID: mdl-29080023

ABSTRACT

Adaptive plasticity occurs intensely during the early postnatal period through processes like proliferation, migration, differentiation, synaptogenesis, myelination and apoptosis. Exposure to particular stimuli during this critical period has long-lasting effects on cognition, stress reactivity and behavior. Maternal care is the main source of social, sensory and chemical stimulation to the young and is, therefore, critical to "fine-tune" the offspring's neural development. Mothers providing a low quantity or quality of stimulation produce offspring that will exhibit reduced cognitive performance, impaired social affiliation and increased agonistic behaviors. Transgenerational transmission of such traits occurs epigenetically, i.e., through mechanisms like DNA methylation and post-translational modification of nucleosomal histones, processes that silence or increase gene expression without affecting the DNA sequence. Reciprocally, providing maternal care profoundly affects the behavior, learning, memory and fine neuroanatomy of the adult female. Such effects are in many cases permanent and sometimes they involve the hormones of pregnancy and lactation. The above evidence supports the idea that the mother-young dyad exerts profound and permanent effects on the brains of both adult and developing organisms, respectively. Effects on the latter can be explained by the neural developmental processes taking place during the early postnatal period. In contrast, little is known about the mechanisms mediating the plasticity of the adult maternal brain. The bidirectional effects that mother and young exert on each other's brains exemplify a remarkable plasticity of this organ for organizing itself and provide an immense source of variability for adaptation and evolution in mammals.


Subject(s)
Brain/physiology , Maternal Behavior/physiology , Neurogenesis/physiology , Neuronal Plasticity/physiology , Animals , Cognition/physiology , DNA Methylation , Female , Pregnancy
11.
Int J Mol Sci ; 18(2)2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28212307

ABSTRACT

Since the worldwide introduction of antiretroviral therapy (ART) in human immunodeficiency virus type 1, HIV-1-positive mothers, together with HIV-1 testing prior to pregnancy, caesarian birth and breastfeeding cessation with replacement feeding, a reduction of HIV-1 mother-to-child transmission (MTCT) has been observed in the last few years. As such, an increasing number of children are being exposed in utero to ART. Several questions have arisen concerning the neurological effects of ART exposure in utero, considering the potential effect of antiretroviral drugs on the central nervous system, a structure which is in continuous development in the fetus and characterized by great plasticity. This review aims at discussing the possible neurological impairment of children exposed to ART in utero, focusing attention on the drugs commonly used for HIV-1 MTCT prevention, clinical reports of ART neurotoxicity in children born to HIV-1-positive mothers, and neurologic effects of protease inhibitors (PIs), especially ritonavir-"boosted" lopinavir (LPV/r) in cell and animal central nervous system models evaluating the potential neurotoxic effect of ART. Finally, we present the findings of a meta-analysis to assess the effects on the neurodevelopment of children exposed to ART in utero.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/virology , HIV-1 , Maternal Exposure , Mothers , Prenatal Exposure Delayed Effects , Animals , Anti-HIV Agents/adverse effects , Antiretroviral Therapy, Highly Active/adverse effects , Disease Management , Disease Models, Animal , Epigenesis, Genetic/drug effects , Female , HIV Infections/complications , HIV Infections/transmission , Humans , Infectious Disease Transmission, Vertical/prevention & control , Meta-Analysis as Topic , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/prevention & control , Pregnancy
12.
J Pediatr ; 179: 263-265, 2016 12.
Article in English | MEDLINE | ID: mdl-27640350

ABSTRACT

Ten girls with sporadic central precocious puberty were screened for mutations in the maternally imprinted gene MKRN3. We detected 1 novel frameshift mutation (p.Arg351Serfs*44) and a previously described mutation (p.Pro161Argfs*10). In the course of investigating the family, genetic analysis found 2 asymptomatic males with paternally inherited MKRN3 mutations, which has not been reported in previous studies.


Subject(s)
Asymptomatic Diseases , Mutation , Paternal Inheritance , Puberty, Precocious/genetics , Ribonucleoproteins/genetics , Child , Child, Preschool , Female , Humans , Male , Pedigree , Ubiquitin-Protein Ligases
13.
São Paulo; s.n; s.n; 2016. 90 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-846628

ABSTRACT

A combinação de agentes quimiopreventivos com diferentes mecanismos de ação tem sido considerada uma estratégia promissora para a prevenção do câncer. Dentre os diversos compostos bioativos em alimentos, destacam-se a tributirina, um pró-fármaco do ácido butírico presente em laticínios e produzido pela fermentação de fibras dietéticas, e o óleo de linhaça, fonte de ácido alfa linolênico. Nesse contexto, foi avaliada a atividade quimiopreventiva de lipídios estruturados obtidos a partir da interesterificação enzimática de tributirina e óleo de linhaça durante a fase de promoção inicial da hepatocarcinogênese experimental. Ratos Wistar machos submetidos ao modelo do hepatócito resistente receberam diariamente, por via intragástrica (i.g), maltodextrina, óleo de linhaça, tributirina, a mistura não esterificada ou lipídios estruturados durante a fase de promoção inicial. O tratamento com lipídios estruturados demonstrou atividade quimiopreventiva comparável à da tributirina, mesmo resultando em menor concentração hepática de ácido butírico. Tanto a tributirina quanto os lipídios estruturados não inibiram a proliferação celular em lesões preneoplásicas, mas induziram a apoptose naquelas em remodelação. Os efeitos inibitórios da tributirina em fases iniciais da hepatocarcinogênese experimental estão relacionados ao aumento da acetilação de histonas e à modulação de processos de translocação nuclear da p53. No presente estudo, foi observado aumento substancial da razão nuclear/citoplasmática de p53 e importina-alfa em fígados de animais submetidos ao modelo e tratados com tributirina, mas não nos tratados com lipídios estruturados. Por outro lado, o tratamento com lipídios estruturados reduziu a expressão dos oncogenes Bcl2, Ccnd2, Pdgfa, Vegfa e aumentou a expressão dos genes supressores de tumor Cdh13, Fhit e Socs3. Assim, embora o potencial quimiopreventivo dos lipídios estruturados seja comparável ao da tributirina, os resultados sugerem que o novo composto não exibe atividade de HDACi, e que seus efeitos inibitórios na hepatocarcinogênese possam ser atribuídos à modulação da expressão de oncogenes e genes supressores de tumor


Combination of chemopreventive agents with different mechanisms of action has been considered a promising strategy to cancer prevention. Among several bioactive food compounds, tributyrin, a butyric acid prodrug obtained from dairy products and dietetic fiber fermentation, and flax seed oil, a rich source of alpha linolenic acid have shown chemopreventive potential. Here, we evaluated the chemopreventive activity of structured lipids obtained by enzymatic interesterification of tributyrin and flax seed oil during the early promotion phase of experimental hepatocarcinogenesis. Male Wistar rats subjected to the resistant hepatocyte model were treated daily, i.g, with maltodextrin, flax seed oil, tributyrin, non-sterified blend, or structured lipids. Treatment structured lipids showed similar chemopreventive activity compared to tributyrin, even when structured lipids yielded lower concentrations of butyric in the liver. Tributyrin and structured lipids did not inhibit cell proliferation in preneoplastic lesions, but both of them induced apoptosis in remodeling preneoplastic lesions. In addition, histone acetylation and p21 restored expression tributyrin molecular mechanisms were related to modulation of p53 nuclear shuttling mechanisms. In the present study, it was observed a substantial increase in p53 nuclear/cytoplasmic ratio and importin-alpha in preneoplastic livers of tributyrin treated rats, but not in those treated with structured lipids. In contrast, treatment structured lipids downregulated expression of major oncogenes Bcl2, Ccnd2, Pdgfa, and Vegfa; and upregulated expression of critical tumor suppressor genes, Cdh13, Socs3 and Fhit. Hence, although structured lipids and tributyrin show similar chemopreventive potential, the results suggest that the new compound does not exhibit HDACi activity, and that its inhibitory effects may be attributed to the modulation of oncogenes and tumor suppressor genes expression


Subject(s)
Animals , Male , Rats , Rats/abnormalities , Linseed Oil/adverse effects , Carcinoma, Hepatocellular/complications , Chemoprevention/adverse effects , Lipase/adverse effects , Lipids/analysis , Gene Expression/genetics , Apoptosis/genetics , Carcinoma, Hepatocellular/prevention & control , Chemoprevention/methods , Epigenesis, Genetic/genetics , Functional Food/analysis
14.
Brasília méd ; 47(2)ago. 2010. ilus
Article in Portuguese | LILACS-Express | LILACS | ID: lil-565123

ABSTRACT

Epigenética representa a programação do genoma para expressar o conjunto apropriado de genes em células específicas em momentos específicos da vida. Os principais mecanismos epigenéticos são: 1 - metilação de citosinas nas ilhas CpG localizadas na região promotorade vários genes; 2 - acetilação pós-translacional ou metilação de lisinas na região N-terminal da histona, que influencia a cobertura da cromatina; e, 3 - produção de micro-RNAs não codificantes envolvidos na modulação da expressão gênica. Epigenética inclui mudanças hereditárias na atividade e expressão do gene, mas também alterações estáveis em longo prazo no potencial de transcrição de uma célula que não é necessariamente hereditária. Essas mudanças podem ser produzidas em especial pelo ambiente no início da vida (poluição, infecção, cuidadosmaternos, etc) e pode afetar a saúde na vida adulta, influenciando a susceptibilidade a diversas doenças, como câncer, psiquiátricas ou neurológicas. Ferramentas farmacológicas e outras formas de intervenção podem modificar potencialmente o padrão epigenético natural, oferecendo um caminho possível para reverter a programação epigenéticadeletéria.


Epigenetic represents the programming of the genome to express the appropriate set of genes in specific cells at specific time points in life. The main epigenetic mechanisms are: 1 - methylation status of cytosines within CpG islands located in the promoter region of many genes; 2 - post-translational acetylation or methylation of lysines in the histone N-terminal region, which influence chromatin packaging; and 3 - production of non coding micro-RNAs involved in gene expression modulation. Epigenetic includes both heritable changes in gene activity and expressionbut also stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable. These changes might be produced in particular by the early life environment (pollution, infection, maternal care, etc) and might affect health in adult life influencing the susceptibility to several diseases, such as cancer, psychiatric or neurologicaldisorders.

15.
ARBS annu. rev. biomed. sci ; ARBS annu. rev. biomed. sci;11(n.esp): T114-T122, 20090000. ilus
Article in English | LILACS | ID: lil-560454

ABSTRACT

It has been long thought that the brain reorganizes itself in response to environmental needs. Sensory experiences coded in action potentials are the mean by which information on the surroundings is introduced into neuronal networks. The information approaching the brain in the form of electrochemical codes must then be translated in biochemical, epigenetic and genetic ones. Only until recently we have begun understanding the underpinning of such informational transformations and how this process is expressed as neuronal plastic responses. Central for our comprehension of this matter is the finding that signals transduction cascades can modify gene expression by remodeling the chromatin through epigenetic mechanisms. Hence, chromatin remodeling seems to be the process by which experiences are “imprinted”.


Subject(s)
Epigenesis, Genetic , Gene Expression , Neuronal Plasticity , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL