Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Micromachines (Basel) ; 15(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39064422

ABSTRACT

A single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin resonance (ESR) frequency fluctuation induced by the time-varying thermal perturbations noise. Thus, suppressing the thermal noise is the fundamental way to enhance single-sensor performance, which is typically achieved by utilizing a thermal control protocol with a complicated and highly costly apparatus if a millikelvin-level stabilization is required. Here, we analyze the real-time thermal drift and utilize an active way to alternately track the single-spin ESR frequency drift in the experiment. Using this method, we achieve a temperature stabilization effect equivalent to sub-millikelvin (0.8 mK) level with no extra environmental thermal control, and the spin-state readout contrast is significantly improved in long-lasting experiments. This method holds broad applicability for NV-based single-spin experiments and harbors the potential for prospective expansion into diverse nanoscale quantum sensing domains.

2.
Ultrasonics ; 141: 107318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657431

ABSTRACT

Piezoelectric ultrasonic transducers, vital in medical devices and aerospace, often face challenges like resonant frequency shifts and impedance variations affecting their operational efficiency. This paper introduces a shunted piezoelectric transducer which could tune itself by digitally programmable inductance. A transformer and inductance-capacitance matching network ensures enhanced compatibility and impedance management. Proposing a fuzzy PI-based phase control method achieves resonant frequency tracking, synchronizing operational frequency with the transducer. In contrast to traditional methods, our approach enables faster and more precise fine-tuning, detecting and rectifying real-world deviations for optimal performance. A comprehensive experimental validation, based on fundamental knowledge analysis, confirms the feasibility and superiority of our proposed method, and the commonly encountered issues of resonance frequency deviation and impedance variation in high-power piezoelectric transducer applications can be effectively mitigated.

3.
ACS Sens ; 8(12): 4728-4736, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38085692

ABSTRACT

Breath hydrogen (H2) and methane (CH4) monitoring play an important role in the diagnosis of gastrointestinal disorders, such as lactose intolerance and small intestinal bacterial overgrowth (SIBO). In this paper, the photoacoustic spectroscopy method is used for H2 gas and CH4 gas detection. We present a novel approach for H2 gas concentration measurement, which is the linear relationship between the resonant frequency of breath carbon dioxide (CO2) and the H2 concentration in a resonant photoacoustic cell. Experimental results show that the minimum detectable limits of H2, CH4, and CO2 are calculated to be 8.86, 0.56, and 145.14 ppm, respectively, which can meet the requirements of breath diagnosis.


Subject(s)
Body Fluids , Lactose Intolerance , Humans , Carbon Dioxide , Lactose Intolerance/diagnosis , Breath Tests/methods , Spectrum Analysis
4.
Micromachines (Basel) ; 14(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38138316

ABSTRACT

Frequency tracking and amplitude control are essential for piezoelectric transducers. Frequency tracking ensures the piezoelectric transducer operates at the resonant frequency for maximum power output, and amplitude control regulates the mechanical motion of the output. This paper presents a novel driver based on a push-pull inverter for piezoelectric transducers. The proposed driver realizes the frequency tracking and amplitude control scheme by a voltage sensing bridge in the case of transformer secondary matching, guaranteeing automatic frequency tracking and precise mechanical functions regardless of environmental and load variations. The proposed scheme is verified by the ultrasonic scalpel and the ultrasonic motor (USM). The experimental results show that this scheme reduces the build-up time from 10 ms to 3 ms and loaded frequency variations from 250 Hz to 200 Hz. In addition, the amplitude control performance was further observed on USM for various loads. The overshoot is less than 5.4% under different load torques. Therefore, the proposed scheme improves the load adaptability and stability of piezoelectric transducers and promotes the application of piezoelectric transducers under various conditions.

5.
Sensors (Basel) ; 23(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37420910

ABSTRACT

In the ultrasonic welding system, the ultrasonic power supply drives the piezoelectric transducer to work in the resonant state to realize the conversion of electrical energy into mechanical energy. In order to obtain stable ultrasonic energy and ensure welding quality, this paper designs a driving power supply based on an improved LC matching network with two functions, frequency tracking and power regulation. First, in order to analyze the dynamic branch of the piezoelectric transducer, we propose an improved LC matching network, in which three voltage RMS values are used to analyze the dynamic branch and discriminate the series resonant frequency. Further, the driving power system is designed using the three RMS voltage values as feedback. A fuzzy control method is used for frequency tracking. The double closed-loop control method of the power outer loop and the current inner loop is used for power regulation. Through MATLAB software simulation and experimental testing, it is verified that the power supply can effectively track the series resonant frequency and control the power while being continuously adjustable. This study has promising applications in ultrasonic welding technology with complex loads.


Subject(s)
Software , Ultrasonics , Equipment Design , Computer Simulation , Transducers
6.
Ultrason Sonochem ; 96: 106438, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209631

ABSTRACT

The power ultrasonic generator (PUG) is the core device of power ultrasonic technology (PUT), and its performance determines the application of this technology in biomedicine, semiconductor, aerospace, and other fields. With the high demand for sensitive and accurate dynamic response in power ultrasonic applications, the design of PUG has become a hot topic in academic and industry. However, the previous reviews cannot be used as a universal technical manual for industrial applications. There are many technical difficulties in establishing a mature production system, which hinder the large-scale application of PUG for piezoelectric transducers. To enhance the performance of the dynamic matching and power control of PUG, the studies in various PUT applications have been reviewed in this article. Initially, the demand design covering the piezoelectric transducer application and parameter requirements for ultrasonic and electrical signals is overall summarized, and these parameter requirements have been recommended as the technical indicators of developing the new PUG. Then the factors affecting the power conversion circuit design are analyzed systematically to realize the foundational performance improvement of PUG. Furthermore, advantages and limitations of key control technologies have been summarized to provide some different ideas on how to realize automatic resonance tracking and adaptive power adjustment, and to optimize the power control and dynamic matching control. Finally, several research directions of PUG in the future have been prospected.

7.
Micromachines (Basel) ; 13(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422433

ABSTRACT

Resonant frequency tracking control of electromagnetic acoustic transducers (EMATs) remains a challenge in terms of drifting working frequency and reduced conversion efficiency caused by working environment changes. This paper presents a fixed-time nonsingular integral terminal sliding mode (FT-NITSM) control strategy for resonant frequency tracking of EMATs to realize precise and high robustness resonant frequency tracking performance. Specifically, a FT-NITSM control method with fast convergence feature is developed and a resonant frequency tracking controller for EMATs is further designed to improve the convergence speed and tracking accuracy. Fixed time stability of the proposed frequency tracking control system is proved through Lyapunov function analysis. Moreover, numerical simulations demonstrate that the FT-NITSM control strategy can ensure precise tracking of the system's operating frequency to its natural resonant frequency in less than 3 s with a tracking error of less than 0.01 × 104 Hz. With the maximum overshoot variation between -20 and 20 and error range in -5 and 5° at the steady state, the FT-NITSM control strategy can ensure the control system impedance angle θ being consistent and eventually bounded. This study provides a toolbox for the resonant frequency tracking control and performance improvement of EMATs.

8.
Micromachines (Basel) ; 13(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36295965

ABSTRACT

There is mutual coupling between amplitude control and frequency tracking control in the closed-loop control of micromechanical resonant sensors, which restricts sensor performance. This paper introduces the principle of an in-plane vibration micromechanical resonant accelerometer with electrostatic stiffness. The characteristic parameters of the microaccelerometer were obtained through computer-aided dimension measurement and an open-loop frequency sweep test of the fabricated microstructure. An accurate numerical model was established based on the accelerometer's dynamic principle and characteristic parameters. We established the double closed-loop driving analysis model of amplitude automatic gain control and resonant frequency phase-locked tracking. We used the averaging method to analyze the steady-state equilibrium point and the stable condition. We concluded that the integral coefficient can improve the startup overshoot when the amplitude automatic gain control loop satisfies the stability condition. Under the constraint of frequency tracking, the sizeable coefficient of the integrator can improve the system instability of the amplitude control loop. The theoretical analysis and simulation were helpful in the design and debugging of the system circuit.

9.
Sensors (Basel) ; 22(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080839

ABSTRACT

When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy. The resonant frequency of the PT changes during the actual operation according to the load fluctuations and environmental conditions. Therefore, to maintain a stable output in an ultrasonic system, it is essential to track the resonant frequency in a short time. In particular, fast resonant frequency tracking (RFT: resonant frequency tracking) is an important factor in the medical ultrasonic system, i.e., the system applied in this thesis. The reason is that in the case of a medical ultrasonic system, heat-induced skin necrosis, etc., may cause the procedure to be completed within a short period of time. Therefore, tracking the RFT time for maximum power transfer is an important factor; in this thesis, we propose a new high-speed RFT method. The proposed method finds the whole system resonance frequency by using the transient phenomenon (underdamped response characteristic) that appears in an impedance system, such as an ultrasonic generator, and uses this to derive the mechanical resonance frequency of the PT. To increase the accuracy of the proposed method, parameter fluctuations of the pressure of the PT, the equivalent circuit impedance analysis of the PT, and a MATLAB simulation were performed. Through this, the correlation between the resonance frequency of the ultrasonic system, including the LC filter with nonlinear characteristics and the mechanical resonance frequency of the PT, was analyzed. Based on the analyzed results, a method for tracking the mechanical resonance frequency that can transfer the maximum output to the PT is proposed in this thesis. Experiments show that using the proposed high-speed RFT method, the ultrasonic system can track the mechanical resonance frequency of the PT with high accuracy in a short time.


Subject(s)
Transducers , Ultrasonics , Computer Simulation , Equipment Design , Vibration
10.
Proc Biol Sci ; 289(1982): 20220792, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100028

ABSTRACT

Many birds emit tonal song syllables even though the sound sources generate sound with rich upper harmonic energy content. This tonality is thought to arise in part from dynamically adjusted filtering of harmonic content. Here, we compare tonality of song syllables between vocal learners and non-learners to assess whether this characteristic is linked to the increased neural substrate that evolved with vocal learning. We hypothesize that vocal learning ability is correlated with enhanced ability for generating tonal sounds, because vocal production learners might also have an enhanced ability to articulate their vocal tracts and sound source for producing tonality. To test this hypothesis, we compared vocal learners and non-learners from two groups (186 passerines and 42 hummingbirds) by assessing tonality of song syllables. The data suggest that vocal learners in both clades have evolved to sing songs with higher tonality than the related, non-vocal learning clades, which is consistent with stronger roles for broadband dynamic filtering and adjustments to the sound source. In addition, oscine songs display higher tonality than those of hummingbirds. A complex interplay of vocal tract biomechanics, anatomical differences of the sound source as well as increased motor control through vocal learning facilitates generation of broad tonality.


Subject(s)
Songbirds , Vocalization, Animal , Animals , Learning , Sound
11.
Materials (Basel) ; 15(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269060

ABSTRACT

Tuned mass dampers (TMD) have been widely used in passive vibration control, but their main disadvantage is that the vibration reduction effect may be greatly affected by the natural frequency of the main structure. In order to solve this limitation, we designed a frequency adjustable tuned mass damper (FATMD) based on a magneto rheological elastomer (MRE), which is a new type of magneto rheological smart material, with adjustable stiffness, obtained by changing the magnetic induction. We used MRE to change the stiffness of FATMD to track the natural frequency of the main structure. However, adding TMD will change the natural frequency of the system. Therefore, we combined Hilbert-Huang transform (HHT) and a natural excitation technique (NExT), with Simulink/dSPACE, to identify the natural frequency of the system in real time, and then calculated the natural frequency of the main structure through the TMD optimal design theory. This can help adjust FATMD to its optimum tuning state. To verify the applicability and effectiveness of FATMD, this paper compares the FATMD and traditional TMD experimental results. The natural frequency of steel beams can be changed by adding mass blocks. The experimental results indicate that FATMD, using the frequency tracking method, can effectively track the natural frequency of the main structure to ensure that the system is always in the optimum tuning state. In addition, FATMD can still achieve a good vibration reduction effect when the natural frequency of the main structure changes.

12.
Sensors (Basel) ; 22(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35062620

ABSTRACT

Tracking technologies offer a way to monitor movement of many individuals over long time periods with minimal disturbances and could become a helpful tool for a variety of uses in animal agriculture, including health monitoring or selection of breeding traits that benefit welfare within intensive cage-free poultry farming. Herein, we present an active, low-frequency tracking system that distinguishes between five predefined zones within a commercial aviary. We aimed to evaluate both the processed and unprocessed datasets against a "ground truth" based on video observations. The two data processing methods aimed to filter false registrations, one with a simple deterministic approach and one with a tree-based classifier. We found the unprocessed data accurately determined birds' presence/absence in each zone with an accuracy of 99% but overestimated the number of transitions taken by birds per zone, explaining only 23% of the actual variation. However, the two processed datasets were found to be suitable to monitor the number of transitions per individual, accounting for 91% and 99% of the actual variation, respectively. To further evaluate the tracking system, we estimated the error rate of registrations (by applying the classifier) in relation to three factors, which suggested a higher number of false registrations towards specific areas, periods with reduced humidity, and periods with reduced temperature. We concluded that the presented tracking system is well suited for commercial aviaries to measure individuals' transitions and individuals' presence/absence in predefined zones. Nonetheless, under these settings, data processing remains a necessary step in obtaining reliable data. For future work, we recommend the use of automatic calibration to improve the system's performance and to envision finer movements.


Subject(s)
Housing, Animal , Livestock , Animal Husbandry , Animal Welfare , Animals , Chickens , Farms , Humans , Poultry
13.
Sensors (Basel) ; 21(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34451093

ABSTRACT

Recent advances in wearable technologies integrating multi-modal sensors have enabled the in-field monitoring of several physiological metrics. In sport applications, wearable devices have been widely used to improve performance while minimizing the risk of injuries and illness. The objective of this project is to estimate breathing rate (BR) from respiratory sinus arrhythmia (RSA) using heart rate (HR) recorded with a chest belt during physical activities, yielding additional physiological insight without the need of an additional sensor. Thirty-one healthy adults performed a run at increasing speed until exhaustion on an instrumented treadmill. RR intervals were measured using the Polar H10 HR monitoring system attached to a chest belt. A metabolic measurement system was used as a reference to evaluate the accuracy of the BR estimation. The evaluation of the algorithms consisted of exploring two pre-processing methods (band-pass filters and relative RR intervals transformation) with different instantaneous frequency tracking algorithms (short-term Fourier transform, single frequency tracking, harmonic frequency tracking and peak detection). The two most accurate BR estimations were achieved by combining band-pass filters with short-term Fourier transform, and relative RR intervals transformation with harmonic frequency tracking, showing 5.5% and 7.6% errors, respectively. These two methods were found to provide reasonably accurate BR estimation over a wide range of breathing frequency. Future challenges consist in applying/validating our approaches during in-field endurance running in the context of fatigue assessment.


Subject(s)
Running , Wearable Electronic Devices , Adult , Algorithms , Heart Rate , Humans , Monitoring, Physiologic , Respiratory Rate
14.
Ultrasonics ; 117: 106522, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34315051

ABSTRACT

This article aims at realizing the linear parameter-varying (LPV) controller synthesis to compensate temperature dependence for the ultrasonic motor (USM). Initially, based on the improved optimal frequency tracking scheme, the compact LPV model is investigated to approximate the nonlinear temperature dependence. With the aid of the simulation tool, the accuracy of the proposed LPV model is proven. The LPV controller can be an appropriate choice to ensure the stability of passive nonlinear system. In view of the very strictly passivity (VSP) theorem, the VSP LPV controller is constructed as negative feedback. A set of well-designed experimental setup employed the Shinsei USR60 type USM is built afterwards, and the controller implemented by the host is applied to verify the control effect. Compared with the non-model-based controller, the USM with the proposed controller displays better performance, such as more stable output rotational speed. The feasible model in this paper is of great significance to USM. Particularly, the proposed modeling and control methodology are beneficial to the existing optimum frequency tracking technology for the USM.

15.
Heliyon ; 7(4): e06768, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33889786

ABSTRACT

This paper presents a new algorithm for adaptive resampling, called percentile-based resampling (PBR) in a sequential Bayesian filtering, i.e., particle filter (PF) in particular, to improve tracking quality of the frequency trajectories under noisy environments. Since the conventional resampling scheme used in the PF suffers from computational burden, resulting in less efficiency in terms of computation time and complexity as well as the real time applications of the PF. The strategy to remedy this issue is proposed in this work. After state updating, important high particle weights are used to formulate the pre-set percentile in each sequential iteration to create a new set of high quality particles for the next filtering stage. The number of particles after PBR remains the same as the original. To verify the effectiveness of the proposed method, we first evaluated the performance of the method via numerical examples to a complex and highly nonlinear benchmark system. Then, the proposed method was implemented for frequency estimation for two time-varying signals. From the experimental results, via three measurement metrics, our approach delivered better performance than the others. Frequency estimates obtained by our method were excellent as compared to the conventional resampling method when number of particles were identical. In addition, the computation time of the proposed work was faster than those recent adaptive resampling schemes in literature, emphasizing the superior performance to the existing ones.

16.
Micromachines (Basel) ; 11(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339344

ABSTRACT

We present a new ultra-tightly coupled (UTC) integration architecture of a micro-electromechanical inertial measurement unit (MIMU) and global navigation satellite system (GNSS) to reduce the performance degradation caused by abrupt changes of frequency tracking errors. A large frequency error will lead to a decrease in the carrier-to-noise ratio (C/N0) estimate and an increase in the code discriminator estimation error. The disruptive effects of frequency errors on the estimation of C/N0 and on the code discriminator are quantitatively evaluated via theoretical analyses and Monte Carlo simulations. The new MIMU/GNSS UTC architecture introduces a large frequency error detector and a refined frequency processor based on a retuned frequency in each tracking channel. In addition, an adaptive channel prefilter with multiple fading factors is introduced as an alternate to the conventional prefilter. Numerical simulations based on a highly dynamic trajectory are used to assess performance. The simulation results show that when there is an abrupt step change in the frequency tracking error, the new UTC architecture can effectively suppress the divergence of navigation solutions and the loss of tracking lock, and can significantly reduce the deviation of the C/N0 estimation.

17.
Philos Trans A Math Phys Eng Sci ; 378(2182): 20190607, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-32921235

ABSTRACT

Eddy current pulsed thermography (ECPT) has been widely used in the field of non-destructive testing due to its safety, non-contact detection, high spatial resolution and intuitive results. Inductive excitation source is an important component of ECPT and provides high-frequency alternating current to drive the excitation coil. However, a resonant frequency distortion phenomenon exists in the excitation source during the detection process, which seriously affects the output power of the excitation source and the sample detection effect. This paper presents a fast resonant frequency tracking loop for full bridge series resonant inverter which is used to search the resonance frequency in real time through direct digital synthesizer (DDS) and all-digital phase-locked loop. Theoretical analysis and simulation are presented to explain the working principle of the loop. Then, an experimental prototype is manufactured which serves as an excitation source for the ECPT experimental system. Compared with traditional excitation sources, the prototype does not need a water-cooled device and the tracking speed can be adjusted by modifying the parameters of DDS. Finally, experiments have been conducted on both artificial slot of 45# steel and natural cracks of rail and stainless steel to investigate the influence of resonant frequency tracking speed on the crack detection. The results revealed that reducing the resonant frequency tracking time can efficiently improve defect detectability and the manufactured prototype showed more application potential. This article is part of the theme issue 'Advanced electromagnetic non-destructive evaluation and smart monitoring'.

18.
Acta Psychol (Amst) ; 210: 103161, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32847751

ABSTRACT

It is presumed that people track the sex ratios in their environment (the number of males relative to number of females) in order to adaptively adjust their decisions and behaviors, but this actual tracking ability has not been established. The relevance of sex ratio information, drawn from evolutionary biology and studies of human relationship decision making, is integrated here with memory research (on frequency encoding), perception research (on ensemble coding), and neuroscience research. A series of four experiments provide empirical results to help fill research gaps and facilitate this theoretical integration. In particular, these studies connect details from memory research on relatively automatic frequency encoding of both items and categories, perception research on summary statistics from ensemble coding, and theoretical ideas about the function of these abilities (specifically applied to human sex ratios based on faces) from social and evolutionary approaches. Collectively this research demonstrates an evolved psychological mechanism for functional, fast, and relatively automatic human abilities to track experienced sex ratios in the social world. This sex ratio information is theorized to underpin documented facultative adjustments in relationship dynamics as well as perceptions of social group characteristics. This integrative approach highlights how the coding, memory, and judgments about population sex ratios can both account for a number of existing findings and point towards key further research.


Subject(s)
Biological Evolution , Judgment , Sex Ratio , Female , Humans , Male , Memory
19.
Ultrason Sonochem ; 57: 57-61, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31208619

ABSTRACT

The offshore extraction of crude oil produces stable water in oil emulsion. To separate this emulsion into oil and water phases, the oil/water interfacial film is commonly destroyed by the addition of chemical demulsifiers. The use of an ultrasonic standing wave force field could be an alternative to reduce the dosage of chemical demulsifiers in the coalescence process. In this work, an ultrasonic separator of water in crude oil emulsions is investigated through the use of a high frequency ultrasonic standing wave coalescence chamber. The coalescing chamber uses the acoustic radiation force to induce the coalescence of water droplets at the pressure nodes of a standing wave field. Due to temperature fluctuations, the excitation frequency is controlled to maintain the resonance in the coalescence chamber and the voltage amplitude is controlled to deliver a given acoustic power. Experimental tests using standardized emulsions of water in oil were carried out in a laboratory processing plant. The effects of ultrasound application, flow rate, initial water content, demulsifier dosage and chamber inlet temperature were analyzed. The results show that the use of the acoustic radiation force improves the emulsion separation in all the conditions analyzed, when compared with the gravitational separation technique.

20.
Sensors (Basel) ; 18(10)2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30274266

ABSTRACT

As a dedicated communication protocol for Internet-of-Things, narrowband internet of things (NB-IoT) needs to establish the communication link rapidly and reduce retransmissions as much as possible to achieve low power consumption and stable performance. To achieve these targets, the low-power scheme of the initial cell search and frequency tracking is investigated in this paper. The cell search process can be subdivided into narrowband primary synchronization signal (NPSS) detection and narrowband secondary synchronization signal (NSSS) detection. We present an NPSS detection method whose timing metric is composed of symbol-wise autocorrelation and a dedicated normalization factor. After the detection of NPSS, the symbol timing and fractional frequency offset estimation is implemented in a resource-efficient way. NSSS detection is conducted in the frequency domain with a calculation-reduced algorithm based on the features of NSSS sequences. To compensate the accumulated frequency offset during uplink transmission, a pilot-aided rapid frequency tracking algorithm is proposed. The simulation results of the proposed cell search scheme are outstanding in both normal coverage and extended coverage NB-IoT scenarios, and the accumulated frequency offset can be estimated with high efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL