Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.021
Filter
1.
Environ Monit Assess ; 196(10): 996, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352559

ABSTRACT

In this study, cadmium ions were effectively removed from domestic wastewaters using an adsorptive treatment strategy based on γ-AlOOH nanoflowers. A novel, rapid, and simple procedure was developed for the synthesis of the nanoflowers. Characterization studies were performed using X-ray powder diffraction patterns and scanning electron microscope images. The synthesized nanoflowers were utilized as adsorbent in the batch adsorption experiments. The influential parameters of the adsorption process were optimized, and a flame atomic absorption spectrophotometry (FAAS) system was used to determine maximum percent removal of cadmium ions. Matrix-matched calibration strategy, in which the calibration plot was developed in wastewater medium, was utilized for the accurate and precise quantification of cadmium in the effluent samples. The percentage removal efficiency values were calculated between 84 and 98% for different concentrations of cadmium ions in the wastewater samples. Equilibrium data was fitted to the four different linearization methods of the Langmuir isotherm model, as well as the Freundlich isotherm model and Elovich isotherm model. The best fitting was achieved for the Langmuir model with a high R2 value of 0.9956 and maximum adsorption capacity was calculated as 6.23 mg/g.


Subject(s)
Cadmium , Microwaves , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Cadmium/chemistry , Cadmium/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Adsorption , Waste Disposal, Fluid/methods , Aluminum Oxide/chemistry , Water Purification/methods , Aluminum Hydroxide
2.
Front Chem ; 12: 1457265, 2024.
Article in English | MEDLINE | ID: mdl-39385963

ABSTRACT

The present work aimed to highlight an efficient, readily accessible, and cost-effective adsorbent derived from Dalbergia sissoo (DS) leaf powder for removing the environmentally hazardous dye "alizarin red S" (ARS) from hydrous medium. A variant of the adsorbent is activated via sulfuric acid and composited with magnetic iron oxide nanoparticles (DSMNC). Both adsorbents are thoroughly characterized using techniques such as Fourier transform infrared spectroscopy, point of zero charge, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which show that they have a porous structure rich in active sites. Different adsorption conditions are optimized with the maximum removal efficiency of 76.63% for DS and 97.89% for DSMNC. The study was highlighted via the application of various adsorption isotherms, including Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich, to adsorption data. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were utilized to investigate the kinetics and mechanism of adsorption. The Freundlich model and pseudo-second-order kinetics exhibited the best fit, suggesting a combination of physical interactions, as confirmed by the D-R and Temkin models. The dominant adsorbate-adsorbent interactive interactions responsible for ARS removal were hydrogen bonding, dispersion forces, and noncovalent aromatic ring adsorbent pi-interactions. Thermodynamic parameters extracted from adsorption data indicated that the removal of the mutagenic dye "ARS" was exothermic and spontaneous on both DS and DSMNC, with DSMNC exhibiting higher removal efficiency.

3.
Article in English | MEDLINE | ID: mdl-39365536

ABSTRACT

This paper reports a comprehensive study of Theobroma cacao pericarp (TCP) residues, which has been prepared, characterized, and tested as an inexpensive and efficient biosorbent of Cr(VI) from aqueous solutions. The maximum adsorption capacity of TCP obtained at optimal conditions (pH = 2, dose = 0.5 g L-1, C0 = 100 mg L-1) was qmax = 48.5 mg g-1, which is one of the highest values reported by the literature. Structural and morphological characterization has been performed by FTIR, SEM/EDX, and pHPZC measurements. FTIR analysis revealed the presence of O-H, -NH, -NH2, C = H, C = O, C = C, C-O, and C-C functional groups that would be involved in the Cr(VI) biosorption processes. The experimental equilibrium data of biosorption process were successfully fitted to non-linear Langmuir (R2 = 0.95, χ2 = 11.0), Freundlich (R2 = 0.93, χ2 = 14.8), and Temkin (R2 = 0.93, χ2 = 14.7) isotherm models. Kinetics experimental data were well adjustment to non-linear pseudo-2nd (R2 = 0.99, χ2 = 2.08)- and pseudo-1st-order kinetic models (R2 = 0.98, χ2 = 2.25) and also to intra-particle Weber-Morris (R2 = 0.98) and liquid film diffusion (R2 = 0.99) models. These results indicate that Cr(VI) biosorption on heterogeneous surfaces as well as on monolayers of TCP would be a complex process controlled by chemisorption and physisorption mechanisms. The thermodynamic results indicate that the Cr(VI) biosorption on TCP is a feasible, spontaneous, and endothermic process. TCP can be regenerated with NaOH and reused up to 3 times.

4.
Pure Appl Chem ; 96(9): 1247-1255, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39372949

ABSTRACT

Many of the United Nations' Sustainable Development Goals (SDGs) can be addressed through chemistry. Researchers at Memorial University of Newfoundland, Canada, have been sharing their stories on September 25 for the past two years through the Global Conversation on Sustainability. This article describes the details of one of these stories. As the global population increases, food production including aquaculture is increasing to provide for this. At the same time, this means more waste is produced. Waste from aquaculture is often overlooked as a source of valuable chemicals. By-products from farming blue mussels (Mytilus edulis) is dominated by shells rich in calcite. A 'soft' calcite material prepared from waste mussels, via a combination of heat and acetic acid treatment, was investigated for its adsorptive properties and its possible use in wastewater remediation. The adsorption of two cationic dyes, methylene blue and safranin-O, on this material were evaluated through isothermal and kinetic modelling. The adsorption systems for both methylene blue and safranin-O can best be described using Langmuir isotherms and the respective adsorption capacities were 1.81 and 1.51 mg/g. The adsorption process was dominated by pseudo-second order rate kinetics. Comparisons are made with other mollusc-derived materials reported to date.

5.
HardwareX ; 19: e00570, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39262424

ABSTRACT

The current lack of standardized testing methods to assess the binding isotherms of ions in cement and concrete research leads to uncontrolled variability in these results. In this study, an open-source and low-cost apparatus, named OpenHW3, is proposed to accurately measure the binding isotherms of ions in various cementitious material systems. OpenHW3 provides two main options, a temperature-controlled orbital shaker, as well as an option to retrofit a commercial orbital shaker for temperature control. The effectiveness of these device options is validated via comparison with conventional binding isotherms experiments. The binding isotherm results were comparable to conventional Waterbath shakers, while providing more reliable results compared to horizontal commercial shakers. It also provided accurate temperature control between 25 °C and 75 °C. The results here are critical for allowing open access to scientific equipment, and providing high-quality binding isotherm data for reliable service life models of urban infrastructure assets throughout the world.

6.
Heliyon ; 10(18): e37856, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39347409

ABSTRACT

The goal of this work was to assess the competence of organic hydrophobic resin bound gold nanocomposites (OH/R-AuNCs) for detection of pymetrozine insecticide from vegetable samples employing surface-enhanced/attenuated total reflectance-Fourier transform infrared (SE/ATR-FTIR) spectroscopy. The adsorption isotherm models, including the Langmuir, Freundlich and Temkin, are tested to reveal the interactive behaviour between the OH/R-AuNCs and pesticide. The adsorption occurs principally by London-Van der Waals dispersion interactions and hydrogen bonding interactions between the surface of OH/R-AuNCs materials and the hydrophobic part of pesticide molecule. The characteristic absorption band obtained at 3019.94 cm-1 was utilized for the quantitative analysis of pymetrozine insecticide in vegetable samples. The method was found to be accurate and precise, with mean recovery values in the range of 94.5-110 %, correlation coefficient of 0.992 %, and detection limit of 2.65 µg mL-1. The adsorption efficiency of the designed OH/R-AuNCs significantly influences the SE/ATR-FTIR response of the pymetrozine around 90 %. The optimized and validated method was applied to determine the residual concentrations of the pymetrozine that had been applied to vegetable samples.

7.
Int J Mol Sci ; 25(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39337354

ABSTRACT

The limited supply of drinking water has aroused people's curiosity in recent decades. Adsorption is a popular method for removing hazardous substances from wastewater, especially heavy metals, as it is cheap, highly efficient, and easy to use. In this work, a new sludge-based activated carbon adsorbent (thickened samples SBAC1 and un-thickened samples SBAC2) was developed to remove hazardous metals such as cadmium (Cd+2) and lead (Pb+2) from an aqueous solution. The chemical structure and surface morphology of the produced SBAC1 and SBAC2 were investigated using a range of analytical tools such as CHNS, BET, FT-IR, XRD, XRF, SEM, TEM, N2 adsorption/desorption isothermal, and zeta potential. BET surface areas were examined and SBAC2 was found to have a larger BET surface area (498.386 m2/g) than SBAC1 (336.339 m2/g). While the average pore size was 10-100 nm for SBAC1 and 45-50 nm for SBAC2. SBAC1 and SBAC2 eliminated approximately 99.99% of Cd+2 and Pb+2 out the water under all conditions tested. The results of the adsorption of Cd+2 and Pb+2 were in good agreement with the pseudo-second-order equation (R2 = 1.00). Under the experimental conditions, the Cd+2 and Pb+2 adsorption equilibrium data were effectively linked to the Langmuir and Freundlich equations for SBAC1 and SBAC2, respectively. The regeneration showed a high recyclability for the fabricated SBAC1 and SBAC2 during five consecutive reuse cycles. As a result, the produced SBAC1 and SBAC2 are attractive adsorbents for the elimination of heavy metals from various environmental and industrial wastewater samples.


Subject(s)
Cadmium , Charcoal , Lead , Recycling , Sewage , Wastewater , Water Pollutants, Chemical , Water Purification , Cadmium/chemistry , Cadmium/isolation & purification , Lead/chemistry , Lead/isolation & purification , Wastewater/chemistry , Sewage/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Charcoal/chemistry , Recycling/methods , Water Purification/methods
8.
Heliyon ; 10(17): e37382, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296029

ABSTRACT

The occurrence of arsenic in the surroundings raises apprehension because its detrimental impacts on both human health and the ecology. Since adsorption is an effective, affordable method that can be adjusted to specific environmental circumstances, it is a sustainable solution for the removal of arsenic from the aquatic environment. Utilizing biomass that has been chemically activated may be a viable way to increase the adsorption capacity of the material, reduce arsenic pollution, and protect the environment and human health. In the proposed research, Fe(III) loaded saponified Punica granatum peel (Fe(III)-SPGP) has been synthesized to remove arsenic from aqueous solutions. FTIR and SEM analysis were utilized to carry out the characterization of the biosorbents. Batch experiments were carried out by altering several factors including pH and contact time, in addition to initial concentration and desorption. The most effective pH for As(III) adsorption using Fe(III)-SPGP was discovered to be 9.0. After determining that a pseudo-second-order kinetic model was the one that provided the greatest fit for the results of the experiment, the model developed by Langmuir was applied. It was discovered that the maximum adsorption of As(III) that could be adsorbed by Fe(III)-SPGP was 63.29 mg/g. The spent biosorbent may easily be reused again in subsequent applications. Based on these findings, Fe(III)-SPGP shows promise as a cheap effective sorbent for excising contaminants of As(III).

9.
Food Chem ; 463(Pt 2): 141281, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39288465

ABSTRACT

Deoxynojirimycin (DNJ) is an α-glucosidase inhibitor with high food values. However, the complex and costly enrichment processes have greatly prevented its application. Herein, this study aimed to propose a simple and efficient enrichment process for DNJ from Morus alba L. extracts using cation exchange resins. The LSI and D113 resins were chosen due to their excellent adsorption and desorption properties. The adsorption characteristics agreed with the pseudo-first-order kinetic model and the Langmuir isotherm model. This adsorption was chemisorption, spontaneous, endothermic and entropy-driven. Furthermore, the concentration and pH of the extracts, desorption solvent, breakthrough and elution curves, sample loading and elution rate were investigated to optimize the enrichment process by resin column chromatography. The results also showed that the purity of DNJ was improved to 44.00 % with a total recovery of 78.21 % using the LSI-D113 combination strategy. This research demonstrated the industrial feasibility of DNJ enrichment using cation exchange resins.

10.
J Environ Manage ; 370: 122600, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39316881

ABSTRACT

The presence of fluoride in drinking water can cause various diseases, such as dental fluorosis and skeletal fluorosis. The present study aims to intensify the fluoride removal using a rotating anode electro-coagulation (EC) reactor with providing the proper hydrodynamics conditions. This fluoride removal is modeled and optimized using Response Surface Methodology (RSM) and central composite design (CCD) with varying operational parameters (rotation speed: 20-80 RPM, current: 0.2-1.0 A, initial fluoride concentration: 8-40 mg/L and time: 15-75 min). The maximum fluoride removal is obtained as 96.87% (predicted) and 95.40% (experimental) for the optimized process parameters, initial concentration of 32 mg/L, 0.8 A current, 60 min, and 60 RPM of rotating speed. Kinetic analysis reveals that the removal process adheres to a second-order kinetic model, suggesting that the rate of fluoride removal is dependent on the concentration of fluoride ions present. Isothermal studies indicate that the effective sorption of fluoride onto the generated flocs follows a sips isotherm. The optimal cost analysis is carried out to determine the operational cost as 0.256 USD/m3 for F removal of 93.49% at initial concentration 24 mg/L, time 50 min, current 0.7 A, and rotation 70 rpm and presenting a cost-effective solution for fluoride mitigation. Further, characterizations of the resultant sludge through X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and the Toxicity Characteristic Leaching Procedure (TCLP) confirmed the safe disposal potential of the sludge. The findings show a promising approach for fluoride removal, combining high efficiency, economic viability, and environmental safety.

11.
Environ Pollut ; 361: 124838, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214444

ABSTRACT

Pharmaceuticals, stimulants, and biocides enter the environment via wastewater from urban, domestic, and industrial areas, in addition to sewage, aquaculture and agriculture runoff. While some of these compounds are easily degradable in environmental conditions, others are more persistent, meaning they are less easily degraded and can stay in the environment for long periods of time. By exploring the adsorptive properties of a wide range of pharmaceuticals, stimulants, and biocides onto particles relevant for marine conditions, we can better understand their environmental behaviour and transport potential. Here, the sorption of 27 such compounds to inorganic (kaolin) and biotic (the microalgae Cryptomonas baltica) marine particles was investigated. Only two compounds sorbed to microalgae, while 23 sorbed to kaolin. The sorption mechanisms between select pharmaceuticals and stimulants and kaolin was assessed through exploring adsorption kinetics (caffeine, ciprofloxacin, citalopram, fluoxetine, and oxolinic acid) and isotherms (ciprofloxacin, citalopram, and fluoxetine). Temperature was shown to have a significant impact on partitioning, and the impact was more pronounced closer to maximum sorption capacity for the individual compounds.

12.
Environ Monit Assess ; 196(9): 802, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120741

ABSTRACT

This study assess how well diclofenac (DCF) can be separated from aqueous solution using potassium permanganate-modified eggshell biosorbent (MEB). The MEB produced was characterised using XRD, FTIR, and SEM. Batch experiments were conducted to examine and assess the impact of contact time, adsorbent dosage, initial concentration, and temperature on the adsorption capacity of the MEB in the DCF sequestration. The best parameters to obtained 95.64% DCF removal from liquid environment were 0.05 g MEB weight, 50 mg/L initial concentration, and 60 min contact time at room temperature. The maximum DCF sequestration capacity was found to be 159.57 mg/g with 0.05 g of MEB at 298 K. The adsorption isotherm data were more accurately predicted by the Freundlich model, indicating a process of heterogeneous multilayer adsorption. The results of the kinetic study indicated that the pseudo-second-order kinetic models best matched the experimental data. The findings revealed that the dynamic of DCF entrapment is largely chemisorption and diffusion controlled. Based on the values of thermodynamic parameters, the process is both spontaneous and endothermic. The primary processes of DCF sorption mechanism onto the MEB were chemical surface complexation, hydrogen bonding, π-π stacking, and electrostatic interactions. The produced MEB showed effective DCF separation from the aqueous solution and continued to have maximal adsorption capability even after five regeneration cycles. These findings suggest that MEB could be highly efficient adsorbent for the removal of DCF from pharmaceutical wastewater.


Subject(s)
Diclofenac , Egg Shell , Potassium Permanganate , Thermodynamics , Water Pollutants, Chemical , Diclofenac/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Egg Shell/chemistry , Potassium Permanganate/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods , Animals
13.
Environ Sci Pollut Res Int ; 31(40): 52827-52840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39160408

ABSTRACT

Hybrid material of surgical mask activated carbon (SMAC) and Fe2O3 (SMAC-Fe2O3) composite was prepared by simple co-precipitation method and used as potential material for the remediation of 2,4-dicholrophenol (2,4-DCP). The XRD patterns exhibited the presence of SMAC and Fe2O3, FTIR spectrum showed the FeO-carbon stretching at the wavenumber from 400 to 550 cm-1. UV-Vis DRS results showed the band gap was 1.97 eV and 2.05 eV for SMAC-Fe2O3 and Fe2O3, respectively. The SEM images revealed that the Fe2O3 doped onto the fiber morphology of SMAC. The outcomes of the BET examination exhibited a surface area of 195 m2/g and a pore volume of 0.2062 cm3/g for the SMAC/Fe2O3 composite. The batch mode study shows the maximum adsorption and photocatalytic degradation efficacies which were 97% and 78%, respectively. The experimental data was studied with both linear and nonlinear adsorption isotherm and kinetics models. The nonlinear Langmuir isotherm and pseudo-second-order kinetics (PSOK) models have well fit compared with other models. The Langmuir maximum adsorption capacity (qmax) was found 161.60 mg/g. Thermodynamic analysis shows that the 2,4-DCP adsorption onto SMAC-Fe2O3 was a spontaneous and exothermic process. The PSOK assumes that the adsorption process was chemisorption. The photocatalytic degradation rate constant of 2,4-DCP was calculated using pseudo-first-order kinetics (PFOK) and the rate constant for SMAC-Fe2O3 and Fe2O3 were 0.859 × 10-2 min-1 and 0.616 × 10-2 min-1, correspondingly. In addition, the obtained composite exhibited good reusability after a few cycles. These results confirmed that SMAC-Fe2O3 composite is an effective adsorbent and photocatalyst for removing 2,4-DCP pollutants.


Subject(s)
Thermodynamics , Adsorption , Kinetics , Catalysis , Ferric Compounds/chemistry , Charcoal/chemistry
14.
Environ Adv ; 162024 Jul.
Article in English | MEDLINE | ID: mdl-39119617

ABSTRACT

Chlorinated volatile organic compounds (CVOCs) are often found in combination with 1,4-dioxane which has been used as a solvent stabilizer. It would be desirable to separate these compounds since biodegradation of 1,4-dioxane follows an aerobic pathway while anaerobic conditions are needed for biodegrading CVOCs. Conventional adsorbents such as activated carbon (AC) and carbonaceous resins have high adsorption capacities for 1,4-dioxane and CVOCs but lack selectivity, limiting their use for separation (Liu et al., 2019). In the current work, two macrocyclic adsorbents, ß-CD-TFN and Res-TFN, were examined for selective adsorption of chlorinated ethenes in the presence of 1,4-dioxane. Both adsorbents exhibited rapid adsorption of the CVOCs and minimal adsorption of 1,4-dioxane. Res-TFN had a higher adsorption capacity for CVOCs than ß-CD-TFN (measured linear partition coefficient, Kd 2140 -9750 L⋅kg-1 versus 192-918 L⋅kg-1 for 1,1, DCE, cis-1,2-DCE and TCE, respectively) and was highly selective for CVOCs(TCE Kd ~117 Kd for 1,4-dioxane). By comparison, TCE and 1,4-dioxane adsorption on AC was approximately equal at 100 µg⋅L-1 and approximately 1/3 of the adsorption of TCE on the Res-TFN. The greater adsorption and selectivity of Res-TFN suggest that it can be used as a selective adsorbent to separate CVOCs from 1,4-dioxane to allow separate biodegradation.

15.
Materials (Basel) ; 17(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39124509

ABSTRACT

In this study, the maximum CO2 capture capacity of an ordered mesoporous carbon (CMK-3) was evaluated at high pressure (35 atm) and several temperatures (0, 10, 20, and 35 °C). CMK-3 was synthesized with the hard template method (silica SBA-15) using furfuryl alcohol and toluene as carbon sources. The CO2 adsorption isotherms were fitted to the following adsorption theories: Freundlich, Langmuir, Sips, Toth, Dubinin-Radushkevich, and Temkin. The maximum capture capacity (726.7 mg·g-1) was achieved at 0 °C and 34 atm. The results of the study of successive adsorption-desorption cycles showed that multi-cycle reversible gas capture processes could be used in optimal temperature and pressure conditions. It was determined that 0.478 g of CMK-3 would be required to reduce the CO2 concentration in 1 m3 of air to pre-industrial levels (280 ppm). The obtained results may contribute to technological developments for the mitigation of human impacts on the environment through the capture of atmospheric CO2.

16.
Heliyon ; 10(14): e34657, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39148992

ABSTRACT

The capacity of South African Heulandite (HEU) zeolite to remove Pb2+ and Cd2+ ions from aqueous solution was investigated using batch experiments and molecular simulations studies. The effect of different factors on the adsorption of these ions onto the zeolite was investigated; contact time, initial metal ion concentration and the amount of HEU adsorbent. Molecular simulations was done using Monte Carlo and density functional theory. Experimental results obtained indicate that the maximum adsorption for the two ions occur at pH 5 and after 240 min of contact time. The percent removal based on contact time of Pb2+ and Cd2+ ions from water by the heulandite zeolite were 99.7 and 76.7 %, respectively. The adsorption of two metal ions onto the HEU zeolite follows the Langmuir adsorption isotherm. From the molecular simulation findings, the adsorption of Pb2+ ions onto the HEU window is equidistant from the two adjacent oxygen atoms within the HEU structure while the Cd2+ ion is adsorbed in the upper left side of the 8-ring HEU window. It was observed that the performance of the zeolite can significantly be improved by doping with germanium, aluminum, thallium indium, and sodium cations. These results indicate that the application of HEU zeolite as an adsorbent holds a great promise in heavy metal removal from aqueous solutions.

17.
Front Chem ; 12: 1393791, 2024.
Article in English | MEDLINE | ID: mdl-39161956

ABSTRACT

Uncontrolled or improperly managed wastewater is considered toxic and dangerous to plants, animals, and people, as well as negatively impacting the ecosystem. In this research, the use of we aimed to prepare polymer nanocomposites (guar gum/polyvinyl alcohol, and nano-montmorillonite clay) for eliminating heavy metals from water-based systems, especially Cu2+ and Cd2+ ions. The synthesis of nanocomposites was done by the green method with different ratios of guar gum to PVA (50/50), (60/40), and (80/20) wt%, in addition to glycerol that acts as a cross-linker. Fourier-transform infrared spectroscopy (FT-IR) analysis of the prepared (guar gum/PVA/MMT) polymeric nano-composites' structure and morphology revealed the presence of both guar gum and PVA's functional groups in the polymeric network matrix. Transmission electron microscopy (TEM) analysis was also performed, which verified the creation of a nanocomposite. Furthermore, theromgravimetric analysis (TGA) demonstrated the biocomposites' excellent thermal properties. For those metal ions, the extreme uptake was found at pH 6.0 in each instance. The Equilibrium uptake capacities of the three prepared nanocomposites were achieved within 240 min. The maximal capacities were found to be 95, 89 and 84 mg/g for Cu2+, and for Cd2+ were found to be 100, 91, 87 mg/g for guar gum (80/20, 60/40 and 50/50), respectively. The pseudo-2nd-order model with R2 > 0.98 was demonstrated to be followed by the adsorption reaction, according to the presented results. In less than 4 hours, the adsorption equilibrium was reached. Furthermore, a 1% EDTA solution could be used to revitalize the metal-ion-loaded nanocomposites for several cycles. The most promising nanocomposite with efficiency above 90% for the removal of Cu2+ and Cd2+ ions from wastewater was found to have a guar (80/20) weight percentage, according to the results obtained.

18.
Int J Biol Macromol ; 277(Pt 2): 134350, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094877

ABSTRACT

In this study, a novel and cost-effective approach was employed to prepare an effective Pb(II) adsorbent. We synthesized highly porous CMCSB-SCB microbeads with multiple active binding sites by combining carboxymethylated chitosan Schiff base (CMCSB) and sugarcane bagasse (SCB). These microbeads were structurally and morphologically characterized using various physical, analytical, and microscopic techniques. The SEM image and N2-adsorption analysis of CMCSB-SCB revealed a highly porous structure with irregularly shaped voids and interconnected pores. The CMCSB-SCB microbeads demonstrated an impressive aqueous Pb(II) adsorption capacity, reaching a maximum of 318.21 mg/g, under identified optimal conditions: pH 4.5, 15 mg microbeads dosage, 30 min contact time, and Pb(II) initial concentration (350 mg/L). The successful adsorption of Pb(II) onto CMCSB-SCB beads was validated using FTIR, EDX, and XPS techniques. Furthermore, the experimental data fitting indicated a good agreement with the Langmuir model (R2 = 0.99633), whereas the adsorption kinetics aligned well with the pseudo-second-order model (R2 = 0.99978). The study also identified the Pb(II) adsorption mechanism by CMCSB-SCB microbeads as monolayer chemisorption.


Subject(s)
Cellulose , Chitosan , Lead , Microspheres , Saccharum , Schiff Bases , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Chitosan/analogs & derivatives , Lead/chemistry , Lead/isolation & purification , Adsorption , Schiff Bases/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Kinetics , Saccharum/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Water/chemistry
19.
J Chromatogr A ; 1732: 465211, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39142166

ABSTRACT

Two commercially available extraction chromatography (EXC) resins containing N,N,N',N'-tetra-n-octyldiglycolamide (DGA Resin, Normal, 50 - 100 µm) and Bis(2-ethylhexyl) phosphate (LN Resin, 100 - 150 µm) were used as adsorbents to study fundamental adsorption properties such as thermodynamic values, equilibrium isotherms, and kinetic uptake models for terbium(III) adsorption. Weight distribution ratios (Dw) for terbium on DGA and LN resins were measured using a [160Tb]Tb3+radiometric tracer in nitric acid as a function of acidity, temperature, initial analyte concentration, and equilibrium time. The Dw values showed increasing binding affinity for DGA resin at high nitric acid concentrations and decreasing binding affinity for LN resins. Thermodynamic studies for DGA and LN resins revealed that the Gibbs free energy (ΔG) increased consistently with temperature. To model equilibrium data, increasingly higher parameter equilibrium isotherm models (Henry (1) < Langmuir, Freundlich (2) < Redlich-Peterson (3) < Fritz-Schluender (4)) were compared on their root mean squared errors (RMSE) and adjusted determination coefficients to determine the most applicable model. In all cases, the empirical four-parameter Fritz-Schluender isotherm demonstrated a superior fit. Similar comparisons for reaction-based kinetic models (Pseudo-first-order < Pseudo-second-order < Pseudo-n-order) revealed that the higher-order PNO model yielded a superior fit of kinetic data for both resins. However, in some cases, adsorption isotherms and kinetic models could also be modeled by a lower-order model with minimal change in error parameters. Weber-Morris plots revealed that two linear sections are observed for each resin, where the first linear segment is attributed to fast (film diffusion) adsorption of terbium, followed by slower intraparticle diffusion of terbium through the pores as the rate-limiting step. Based on the Weber-Morris plot, both film and intraparticle diffusion are involved in controlling the kinetic rate of adsorption for DGA and LN resins.


Subject(s)
Terbium , Thermodynamics , Adsorption , Kinetics , Terbium/chemistry , Resins, Synthetic/chemistry , Temperature
20.
Sci Total Environ ; 950: 175270, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39111436

ABSTRACT

Increased anthropogenic activities over the last decades have led to a gradual increase in chromium (Cr) content in the soil, which, due to its high mobility in soil, makes Cr accumulation in plants a serious threat to the health of animals and humans. The present study investigated the ameliorative effect of foliar-applied Si nanoparticles (SiF) and soil-applied SiNPs enriched biochar (SiBc) on the growth of wheat in Cr-polluted soil (CPS). Two levels of CPS were prepared, including 12.5 % and 25 % by adding Cr-polluted wastewater in the soil as soil 1 (S1) and soil 2 (S2), respectively for the pot experiment with a duration of 40 days. Cr stress significantly reduced wheat growth, however, combined application of SiF and SiBc improved root and shoot biomass production under Cr stress by (i) reducing Cr accumulation, (ii) increasing activities of antioxidant enzymes (ascorbate peroxidase and catalase), and (iii) increasing protein and total phenolic contents in both root and shoot respectively. Nonetheless, separate applications of SiF and SiBc effectively reduced Cr toxicity in shoot and root respectively, indicating a tissue-specific regulation of wheat growth under Cr. Later, the Langmuir and Freundlich adsorption isotherm analysis showed a maximum soil Cr adsorption capacity ∼ Q(max) of 40.6 mg g-1 and 59 mg g-1 at S1 and S2 respectively, while the life cycle impact assessment showed scores of -1 mg kg-1 and -211 mg kg-1 for Cr in agricultural soil and - 0.184 and - 38.7 for human health at S1 and S2 respectively in response to combined SiF + SiBC application, thus indicating the environment implication of Si nanoparticles and its biochar in ameliorating Cr toxicity in different environmental perspectives.


Subject(s)
Charcoal , Chromium , Nanoparticles , Silicon , Soil Pollutants , Triticum , Triticum/drug effects , Triticum/growth & development , Charcoal/chemistry , Soil Pollutants/toxicity , Chromium/toxicity , Nanoparticles/toxicity , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL