Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
J Dig Dis ; 24(5): 312-320, 2023 May.
Article in English | MEDLINE | ID: mdl-37458142

ABSTRACT

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that poses a significant health concern. Although its etiology remains unknown, there is growing evidence that gut dysbiosis is involved in the development and exacerbation of IBS. Previous studies have reported altered microbial diversity, abundance, and composition in IBS patients when compared to controls. However, whether dysbiosis or aberrant changes in the intestinal microbiota can be used as a hallmark of IBS remains inconclusive. We reviewed the literatures on changes in and roles of intestinal microbiota in relation to IBS and discussed various gut microbiota manipulation strategies. Gut microbiota may affect IBS development by regulating the mucosal immune system, brain-gut-microbiome interaction, and intestinal barrier function. The advent of high-throughput multi-omics provides important insights into the pathogenesis of IBS and promotes the development of individualized treatment for IBS. Despite advances in currently available microbiota-directed therapies, large-scale, well-organized, and long-term randomized controlled trials are highly warranted to assess their clinical effects. Overall, gut microbiota alterations play a critical role in the pathophysiology of IBS, and modulation of microbiota has a significant therapeutic potential that requires to be further verified.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/therapy , Gastrointestinal Microbiome/physiology , Dysbiosis/complications , Defecation
2.
Micromachines (Basel) ; 13(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36557450

ABSTRACT

Microcomponent manipulation (MCM) technology plays a decisive role in assembling complex systems at the micro- and nanoscale. However, the existing micromanipulation methods are difficult to widely apply in the manufacturing of microelectromechanical systems (MEMSs) due to the limited manipulation space and complex application objects, and the manipulation efficiency is relatively low, which makes it difficult to industrialize these micromanipulating systems. To solve the above problems, this paper proposes an efficient metal MCM strategy based on the electrochemical method. To verify the feasibility and repeatability of the strategy, the finite element model (FEM) incorporating the hydrodynamic and electrochemical theories is used to calculate the local stress distribution of the contact position during the dynamic pick-up process. Based on the simulation results, we defined the relationship between the parameters, such as the optimal manipulating position and angle for picking, transferring and releasing. The failure behaviors of pick-up are built to realize the efficient three-dimensional manipulation of microcopper wire of 300 µm. By establishing a theoretical model and experimental verification, it was concluded that the middle point was the best manipulating position when picking up the microcopper wire, the most efficient picking angle was between 45 and 60 degrees for the pipette, and the average time was 480 s in three sets of picking-release manipulation experiments. This paper provides an achievable idea for different types of micro-object manipulations and promotes the rapid application of micromanipulation techniques in MEMSs.

3.
Bioresour Technol ; 352: 127105, 2022 May.
Article in English | MEDLINE | ID: mdl-35378286

ABSTRACT

Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.


Subject(s)
Biofuels , Ethanol , Biomass , Ethanol/metabolism , Lignin/metabolism
4.
World J Microbiol Biotechnol ; 36(9): 126, 2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32712859

ABSTRACT

The phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) is the major uptake system responsible for transporting glucose, and is involved in glucose translocation and phosphorylation in Corynebacterium glutamicum. For the longest time, the PTSGlc was considered as the only uptake system for glucose. However, some PTS-independent glucose uptake systems (non-PTSGlc) were discovered in recent years, such as the coupling system of inositol permeases and glucokinases (IPGS) and the coupling system of ß-glucoside-PTS permease and glucokinases (GPGS). The products (e.g. lysine, phenylalanine and leucine) will be increased because of the increasing intracellular level of phosphoenolpyruvate (PEP), while some by-products (e.g. lactic acid, alanine and acetic acid) will be reduced when this system become the main uptake pathway for glucose. In this review, we survey the uptake systems for glucose in C. glutamicum and their composition. Furthermore, we summarize the latest research of the regulatory mechanisms among these glucose uptake systems. Detailed strategies to manipulate glucose uptake system are addressed based on this knowledge.


Subject(s)
Carbohydrate Metabolism , Corynebacterium glutamicum/metabolism , Glucose/metabolism , Bacterial Proteins/metabolism , Biological Transport , Corynebacterium glutamicum/genetics , Glucosides , Membrane Proteins , Membrane Transport Proteins/metabolism , Mutagenesis, Site-Directed , Phosphoenolpyruvate Sugar Phosphotransferase System , Protein Kinases
5.
Sheng Wu Gong Cheng Xue Bao ; 33(1): 16-26, 2017 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-28959859

ABSTRACT

Cofactor balance plays an important role in producing enzymes, pharmaceuticals and chemicals. To meet the demand of industrial production, microbes should maintain a maximal carbon flux towards target metabolites without fluctuations in cofactor. We reviewed the physiological function of cofactor and discussed detailed strategies to manipulate cofactor balance through biochemical engineering and metabolic engineering. Furthermore, we indicated future research needs to further regulate cofactor balance.


Subject(s)
Coenzymes , Metabolic Engineering , Synthetic Biology
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-310565

ABSTRACT

Cofactor balance plays an important role in producing enzymes, pharmaceuticals and chemicals. To meet the demand of industrial production, microbes should maintain a maximal carbon flux towards target metabolites without fluctuations in cofactor. We reviewed the physiological function of cofactor and discussed detailed strategies to manipulate cofactor balance through biochemical engineering and metabolic engineering. Furthermore, we indicated future research needs to further regulate cofactor balance.

SELECTION OF CITATIONS
SEARCH DETAIL
...