Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Entropy (Basel) ; 25(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38136527

ABSTRACT

In this study, we investigate a nonlinear diffusion process in which particles stochastically reset to their initial positions at a constant rate. The nonlinear diffusion process is modeled using the porous media equation and its extensions, which are nonlinear diffusion equations. We use analytical and numerical calculations to obtain and interpret the probability distribution of the position of the particles and the mean square displacement. These results are further compared and shown to agree with the results of numerical simulations. Our findings show that a system of this kind exhibits non-Gaussian distributions, transient anomalous diffusion (subdiffusion and superdiffusion), and stationary states that simultaneously depend on the nonlinearity and resetting rate.

2.
Entropy (Basel) ; 22(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322596

ABSTRACT

The q-exponential form eqx≡[1+(1-q)x]1/(1-q)(e1x=ex) is obtained by optimizing the nonadditive entropy Sq≡k1-∑ipiqq-1 (with S1=SBG≡-k∑ipilnpi, where BG stands for Boltzmann-Gibbs) under simple constraints, and emerges in wide classes of natural, artificial and social complex systems. However, in experiments, observations and numerical calculations, it rarely appears in its pure mathematical form. It appears instead exhibiting crossovers to, or mixed with, other similar forms. We first discuss departures from q-exponentials within crossover statistics, or by linearly combining them, or by linearly combining the corresponding q-entropies. Then, we discuss departures originated by double-index nonadditive entropies containing Sq as particular case.

SELECTION OF CITATIONS
SEARCH DETAIL