Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
ACS Nano ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382840

ABSTRACT

Recent advances in scanning probe microscopy combined with electron spin resonance have revealed that localized electron spins on or near surfaces can be utilized as building blocks for the bottom-up assembly of functional quantum-coherent nanostructures. In this perspective, we review the recent advances, lay out advantages of this platform and outline the challenges that lie ahead on the way to the application of on-surface atomic spins to quantum information science and quantum computing.

2.
Sci Rep ; 14(1): 22703, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349958

ABSTRACT

Developing collaborative research platforms for quantum bit control is crucial for driving innovation in the field, as they enable the exchange of ideas, data, and implementation to achieve more impactful outcomes. Furthermore, considering the high costs associated with quantum experimental setups, collaborative environments are vital for maximizing resource utilization efficiently. However, the lack of dedicated data management platforms presents a significant obstacle to progress, highlighting the necessity for essential assistive tools tailored for this purpose. Current qubit control systems are unable to handle complicated management of extensive calibration data and do not support effectively visualizing intricate quantum experiment outcomes. In this paper, we introduce Qubit Control Storage and Visualization (QubiCSV), a platform specifically designed to meet the demands of quantum computing research, focusing on the storage and analysis of calibration and characterization data in qubit control systems. As an open-source tool, QubiCSV facilitates efficient data management of quantum computing, providing data versioning capabilities for data storage and allowing researchers and programmers to interact with qubits in real time. The insightful visualization are developed to interpret complex quantum experiments and optimize qubit performance. QubiCSV not only streamlines the handling of qubit control system data but also improves the user experience with intuitive visualization features, making it a valuable asset for researchers in the quantum computing domain.

3.
Trends Pharmacol Sci ; 45(10): 880-891, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39317621

ABSTRACT

Clinical trials are necessary for assessing the safety and efficacy of treatments. However, trial timelines are severely delayed with minimal success due to a multitude of factors, including imperfect trial site selection, cohort recruitment challenges, lack of efficacy, absence of reliable biomarkers, etc. Each of these factors possesses a unique computational challenge, such as data management, trial simulations, statistical analyses, and trial optimization. Recent advancements in quantum computing offer a promising opportunity to overcome these hurdles. In this opinion we uniquely explore the application of quantum optimization and quantum machine learning (QML) to the design and execution of clinical trials. We examine the current capabilities and limitations of quantum computing and outline its potential to streamline clinical trials.


Subject(s)
Clinical Trials as Topic , Machine Learning , Quantum Theory , Research Design , Humans , Clinical Trials as Topic/methods
4.
Entropy (Basel) ; 26(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39330122

ABSTRACT

This study demonstrates the existence of an evanescent electron wave outside both finite and infinite quantum wells by solving the Dirac equation and ensuring the continuity of the spinor wavefunction at the boundaries. We show that this evanescent wave shares the spin characteristics of the wave confined within the well, as indicated by analytical expressions for the current density across all regions. Our findings suggest that the electron cannot be confined to a mathematical singularity and that quantum information, or quantum entropy, can leak through any quantum confinement. These results emphasize that the electron wave, fully characterized by Lorentz-invariant charge and current densities, should be considered the true and sole entity of the electron.

5.
Front Optoelectron ; 17(1): 33, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39342550

ABSTRACT

In recent years, quantum computing has made significant strides, particularly in light-based technology. The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness, paving the way for innovative possibilities within compact footprints. This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons, the merits of photonic qubits, and essential photonic device components including light squeezers, quantum light sources, interferometers, photodetectors, and waveguides. The article also examines photonic quantum communication and internet, and its implications for secure systems, detailing implementations such as quantum key distribution and long-distance communication. Emerging trends in quantum communication and essential reconfigurable elements for advancing photonic quantum internet are discussed. The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers, highlighting quantum computational advantages achieved using photons. Additionally, the discussion extends to programmable photonic circuits, integrated photonics and transformative applications. Lastly, the review addresses prospects, implications, and challenges in photonic quantum computing, offering valuable insights into current advancements and promising future directions in this technology.

6.
Front Bioinform ; 4: 1401223, 2024.
Article in English | MEDLINE | ID: mdl-39328584

ABSTRACT

The application of quantum principles in computing has garnered interest since the 1980s. Today, this concept is not only theoretical, but we have the means to design and execute techniques that leverage the quantum principles to perform calculations. The emergence of the quantum walk search technique exemplifies the practical application of quantum concepts and their potential to revolutionize information technologies. It promises to be versatile and may be applied to various problems. For example, the coined quantum walk search allows for identifying a marked item in a combinatorial search space, such as the quantum hypercube. The quantum hypercube organizes the qubits such that the qubit states represent the vertices and the edges represent the transitions to the states differing by one qubit state. It offers a novel framework to represent k-mer graphs in the quantum realm. Thus, the quantum hypercube facilitates the exploitation of parallelism, which is made possible through superposition and entanglement to search for a marked k-mer. However, as found in the analysis of the results, the search is only sometimes successful in hitting the target. Thus, through a meticulous examination of the quantum walk search circuit outcomes, evaluating what input-target combinations are useful, and a visionary exploration of DNA k-mer search, this paper opens the door to innovative possibilities, laying down the groundwork for further research to bridge the gap between theoretical conjecture in quantum computing and a tangible impact in bioinformatics.

7.
Cureus ; 16(8): e67486, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39310567

ABSTRACT

The healthcare sector faces complex challenges that call for innovative solutions to improve diagnostic accuracy, treatment efficacy, and data management. Quantum computing, with its unique capabilities, holds the potential to revolutionize various aspects of healthcare. This narrative review critically examines the existing literature on the application of quantum computing in healthcare, focusing on its utility in enhancing diagnostics, data processing, and treatment planning. Quantum computing's ability to handle large, complex datasets more efficiently than classical computers can significantly impact domains such as genomics, medical imaging, and personalized medicine. Quantum algorithms can accelerate the identification of genetic markers associated with diseases, facilitate the analysis of medical images, and optimize treatment plans based on individual genetic profiles. Moreover, quantum cryptography offers a robust security solution for safeguarding sensitive patient data, a critical need as healthcare increasingly relies on digital platforms. Despite the promising outlook, the integration of quantum computing into healthcare faces technical, ethical, and regulatory challenges. The delicate nature of quantum hardware, the need for error correction, and the scalability of quantum systems pose barriers to widespread adoption. Additionally, concerns around patient privacy and data security, as well as the need for updated regulatory frameworks, must be addressed. Ongoing research and collaborative efforts involving researchers, healthcare providers, and technology developers are crucial to overcoming these hurdles and realizing the full potential of quantum computing in transforming healthcare. As quantum computing continues to evolve, its impact on the future of healthcare could be profound, leading to earlier disease detection, more personalized treatments, and improved patient outcomes. For instance, quantum computing has already been applied to enhance drug discovery processes, with companies like D-Wave Systems (Burnaby, Canada) demonstrating faster molecular simulations for pharmaceutical research and IBM's (Armonk, USA) quantum systems being used to model chemical reactions for new drug development.

8.
Comput Biol Med ; 182: 109157, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321582

ABSTRACT

BACKGROUND: Antimicrobial peptides (AMPs) are crucial in the fight against infections and play significant roles in various health contexts, including cancer, autoimmune diseases, and aging. A key aspect of AMP functionality is their selective interaction with pathogen membranes, which often exhibit altered lipid compositions. These interactions are thought to induce a conformational shift in AMPs from random coil to alpha-helical structures, essential for their lytic activity. Traditional computational approaches have faced challenges in accurately modeling these structural changes, especially in membrane environments, thereby opening and opportunity for more advanced approaches. METHOD: This study extends an existing quantum computing algorithm, initially designed for peptide folding simulations in homogeneous environments, to address the complexities of AMP interactions at interfaces. Our approach enables the prediction of the optimal conformation of peptides located in the transition region between hydrophilic and hydrophobic phases, resembling lipid membranes. The new method was tested on three 10-amino-acid-long peptides, each characterized by distinct hydrophobic, hydrophilic, or amphipathic properties, across different media and at interfaces between solvents of different polarity. RESULTS: The developed method successfully modeled the structure of the peptides without increasing the number of qubits required compared to simulations in homogeneous media, making it more feasible with current quantum computing resources. Despite the current limitations in computational power and qubit availability, the findings demonstrate the significant potential of quantum computing in accurately characterizing complex biomolecular processes, particularly AMP folding at membrane models. CONCLUSIONS: This research highlights the promising applications of quantum computing in biomolecular simulations, paving the way for future advancements in the development of novel therapeutic agents. We aim to offer a new perspective on enhancing the accuracy and applicability of biomolecular simulations in the context of AMP interactions with membrane models.

9.
Rep Prog Phys ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39321817

ABSTRACT

Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.

10.
Molecules ; 29(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39275070

ABSTRACT

This review provides a summary of the existing literature on a crucial raw material for the production of isotopically pure semiconductors, which are essential for the development of second-generation quantum systems. Silicon-28-tetrafluoride (28SiF4) is used as an educt for several isotope-engineered chemicals, such as silane-28 (28SiH4) and silicon-28-trichloride (28SiHCl3), which are needed in the pursuit of various quantum technologies. We are exploring the entire chain from the synthesis of 28SiF4 to quantum applications. This includes the chemical properties of SiF4, isotopic enrichment, conversion to silanes, conversion to bulk 28Si and thin films, the physical properties of 28Si (spin neutrality, thermal conductivity, optical properties), and the applications in quantum computing, photonics, and quantum sensing techniques.

11.
Adv Sci (Weinh) ; : e2407442, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258803

ABSTRACT

Understanding crystal characteristics down to the atomistic level increasingly emerges as a crucial insight for creating solid state platforms for qubits with reproducible and homogeneous properties. Here, isotope concentration depth profiles in a SiGe/28Si/SiGe heterostructure are analyzed with atom probe tomography (APT) and time-of-flight secondary-ion mass spectrometry down to their respective limits of isotope concentrations and depth resolution. Spin-echo dephasing times T 2 echo = 128 µ s $T_2^\mathbf {echo}=128 \,\umu\mathrm{s}$ and valley energy splittings EVS around 200 µ e V $200 \,\umu\mathrm{e\mathrm{V}}$ have been observed for single spin qubits in this quantum well (QW) heterostructure, pointing toward the suppression of qubit decoherence through hyperfine interaction with crystal host nuclear spins or via scattering between valley states. The concentration of nuclear spin-carrying 29Si is 50 ± 20ppm in the 28Si QW. The resolution limits of APT allow to uncover that both the SiGe/28Si and the 28Si/SiGe interfaces of the QW are shaped by epitaxial growth front segregation signatures on a few monolayer scale. A subsequent thermal treatment, representative of the thermal budget experienced by the heterostructure during qubit device processing, broadens the top SiGe/28Si QW interface by about two monolayers, while the width of the bottom 28Si/SiGe interface remains unchanged. Using a tight-binding model including SiGe alloy disorder, these experimental results suggest that the combination of the slightly thermally broadened top interface and of a minimal Ge concentration of 0.3 $0.3$ % in the QW, resulting from segregation, is instrumental for the observed large E VS = 200 µ e V $E_\mathrm{VS}=200 \,\umu\mathrm{e\mathrm{V}}$ . Minimal Ge additions <1%, which get more likely in thin QWs, will hence support high EVS without compromising coherence times. At the same time, taking thermal treatments during device processing as well as the occurrence of crystal growth characteristics into account seems important for the design of reproducible qubit properties.

12.
Adv Mater ; 36(40): e2405006, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39205533

ABSTRACT

Semiconductor spin qubits combine excellent quantum performance with the prospect of manufacturing quantum devices using industry-standard metal-oxide-semiconductor (MOS) processes. This applies also to ion-implanted donor spins, which further afford exceptional coherence times and large Hilbert space dimension in their nuclear spin. Here multiple strategies are demonstrated and integrated to manufacture scale-up donor-based quantum computers. 31PF2 molecule implants are used to triple the placement certainty compared to 31P ions, while attaining 99.99% confidence in detecting the implant. Similar confidence is retained by implanting heavier atoms such as 123Sb and 209Bi, which represent high-dimensional qudits for quantum information processing, while Sb2 molecules enable deterministic formation of closely-spaced qudits. The deterministic formation of regular arrays of donor atoms with 300 nm spacing is demonstrated, using step-and-repeat implantation through a nano aperture. These methods cover the full gamut of technological requirements for the construction of donor-based quantum computers in silicon.

13.
Sci Rep ; 14(1): 19768, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187613

ABSTRACT

Many emerging commercial services are based on the sharing or pooling of resources for common use with the aim of reducing costs. Businesses such as delivery-, mobility-, or transport-as-a-service have become standard in many parts of the world, fulfilling on-demand requests for customers in live settings. However, it is known that many of these problems are NP-hard, and therefore both modeling and solving them accurately is a challenge. Here we focus on one such routing problem, the Ride Pooling Problem (RPP), where multiple customers can request on-demand pickups and drop-offs from shared vehicles within a fleet. The combinatorial optimization task is to optimally pool customer requests using the limited set of vehicles, akin to a small-scale flexible bus route. In this work, we propose a quadratic unconstrained binary optimization (QUBO) program and introduce efficient formulation methods for the RPP to be solved using metaheuristics, and specifically emerging quantum optimization algorithms.

14.
Curr Med Imaging ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39177127

ABSTRACT

INTRODUCTION: Deep neural networks (DNNs) have made significant contributions to diagnosing pneumonia from chest X-ray imaging. However, certain aspects of diagnosis and planning can be further enhanced through the implementation of a quantum deep neural network (QDNN). Therefore, we introduced a technique that integrates neural networks with quantum algorithms named the ZFNet-quantum neural network for detecting pneumonia using 5863 X-ray scans with binary cases. METHODS: The hybrid model efficiently pre-processes complex and high-dimensional data by extracting significant features from the ZFNet model. These significant features are given to the quantum circuit algorithm and further embedded into a quantum device. The parameterized quantum circuit algorithm using qubits, superposition theorem, and entanglement phenomena generates 4 features from 4098 features extracted from images via a deep transfer learning model. Moreover, to validate the outcome measures of the proposed technique, we used various PennyLane quantum devices to detect pneumonia and normal control images. By using the Adam optimizer, which exploits an adaptive learning rate that is fixed to 10-6 and six layers of a quantum circuit composed of quantum gates, the proposed model achieves an accuracy of 96.5%, corresponding to 25 epochs. RESULTS: The integrated ZFNet-quantum learning network outperforms the deep transfer learning network in terms of testing accuracy, as the accuracy gained by the convolutional neural network (CNN) is 94%. Therefore, we use a hybrid classical-quantum model to detect pneumonia in which a variational quantum algorithm enhances the outcomes of a ZFNet transfer learning method. CONCLUSION: This approach is an efficient and automated method for detecting pneumonia and could significantly enhance outcome measures related to the speed and accuracy of the network in the clinical and healthcare sectors.

15.
Entropy (Basel) ; 26(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39202119

ABSTRACT

In this study, the PennyLane quantum device simulator was used to investigate quantum and hybrid, quantum/classical physics-informed neural networks (PINNs) for solutions to both transient and steady-state, 1D and 2D partial differential equations. The comparative expressibility of the purely quantum, hybrid and classical neural networks is discussed, and hybrid configurations are explored. The results show that (1) for some applications, quantum PINNs can obtain comparable accuracy with less neural network parameters than classical PINNs, and (2) adding quantum nodes in classical PINNs can increase model accuracy with less total network parameters for noiseless models.

16.
Entropy (Basel) ; 26(8)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39202138

ABSTRACT

Quantum computing is tipped to lead the future of global technological progress. However, the obstacles related to quantum software development are an actual challenge to overcome. In this scenario, this work presents an implementation of the quantum search algorithm in Atos Quantum Assembly Language (AQASM) using the quantum software stack my Quantum Learning Machine (myQLM) and the programming development platform Quantum Learning Machine (QLM). We present the creation of a virtual quantum processor whose configurable architecture allows the analysis of induced quantum noise effects on the quantum algorithms. The codes are available throughout the manuscript so that readers can replicate them and apply the methods discussed in this article to solve their own quantum computing projects. The presented results are consistent with theoretical predictions and demonstrate that AQASM and QLM are powerful tools for building, implementing, and simulating quantum hardware.

17.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39120372

ABSTRACT

Quantum computing leverages the principles of quantum mechanics in novel ways to tackle complex chemistry problems that cannot be accurately addressed using traditional quantum chemistry methods. However, the high computational cost and available number of physical qubits with high fidelity limit its application to small chemical systems. This work employed a quantum-classical framework which features a quantum active space-embedding approach to perform simulations of chemical reactions that require up to 14 qubits. This framework was applied to prototypical example metal hydrogenation reactions: the coupling between hydrogen and Li2, Li3, and Li4 clusters. Particular attention was paid to the computation of barriers and reaction energies. The predicted reaction profiles compare well with advanced classical quantum chemistry methods, demonstrating the potential of the quantum embedding algorithm to map out reaction profiles of realistic gas-phase chemical reactions to ascertain qualitative energetic trends. Additionally, the predicted potential energy curves provide a benchmark to compare against both current and future quantum embedding approaches.

18.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39140856

ABSTRACT

The field of quantum computing (QC) is expanding, with efforts being made to apply it to areas previously covered by classical algorithms and methods. Bioinformatics is one such domain that is developing in terms of QC. This article offers a broad mapping review of methods and algorithms of QC in bioinformatics, marking the first of its kind. It presents an overview of the domain and aids researchers in identifying further research directions in the early stages of this field of knowledge. The work presented here shows the current state-of-the-art solutions, focuses on general future directions, and highlights the limitations of current methods. The gathered data includes a comprehensive list of identified methods along with descriptions, classifications, and elaborations of their advantages and disadvantages. Results are presented not just in a descriptive table but also in an aggregated and visual format.


Subject(s)
Algorithms , Computational Biology , Quantum Theory , Computational Biology/methods , Humans
19.
Front Artif Intell ; 7: 1368569, 2024.
Article in English | MEDLINE | ID: mdl-38974137

ABSTRACT

The training of neural networks (NNs) is a computationally intensive task requiring significant time and resources. This article presents a novel approach to NN training using adiabatic quantum computing (AQC), a paradigm that leverages the principles of adiabatic evolution to solve optimization problems. We propose a universal AQC method that can be implemented on gate quantum computers, allowing for a broad range of Hamiltonians and thus enabling the training of expressive neural networks. We apply this approach to various neural networks with continuous, discrete, and binary weights. The study results indicate that AQC can very efficiently evaluate the global minimum of the loss function, offering a promising alternative to classical training methods.

20.
Rep Prog Phys ; 87(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38996413

ABSTRACT

Quantum computing technology is developing at a fast pace. The impact of quantum computing on the music industry is inevitable. This paper maps the emerging field of quantum computer music. Quantum computer music investigates, and develops applications and methods to process music using quantum computing technology. The paper begins by contextualising the field. Then, it discusses significant examples of various approaches developed to date to leverage quantum computing to learn, process and generate music. The methods discussed range from rendering music using data from physical quantum mechanical systems and quantum mechanical simulations to computational quantum algorithms to generate music, including quantum AI. The ambition to develop techniques to encode audio quantumly for making sound synthesisers and audio signal processing systems is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL