Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 953
Filter
1.
J Biomed Opt ; 30(Suppl 1): S13705, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39310036

ABSTRACT

Significance: Intraoperative molecular imaging (IMI) enables the detection and visualization of cancer tissue using targeted radioactive or fluorescent tracers. While IMI research has rapidly expanded, including the recent Food and Drug Administration approval of a targeted fluorophore, the limits of detection have not been well-defined. Aim: The ability of widely available handheld intraoperative tools (Neoprobe and SPY-PHI) to measure gamma decay and fluorescence intensity from IMI tracers was assessed while varying characteristics of both the signal source and the intervening tissue or gelatin phantoms. Approach: Gamma decay signal and fluorescence from tracer-bearing tumors (TBTs) and modifiable tumor-like inclusions (TLIs) were measured through increasing thicknesses of porcine tissue and gelatin in custom 3D-printed molds. TBTs buried beneath porcine tissue were used to simulate IMI-guided tumor resection. Results: Gamma decay from TBTs and TLIs was detected through significantly thicker tissue and gelatin than fluorescence, with at least 5% of the maximum signal observed through up to 5 and 0.5 cm, respectively, depending on the overlying tissue type or gelatin. Conclusions: We developed novel systems that can be fine-tuned to simulate variable tumor characteristics and tissue environments. These were used to evaluate the detection of fluorescent and gamma signals from IMI tracers and simulate IMI surgery.


Subject(s)
Indium Radioisotopes , Indoles , Molecular Imaging , Phantoms, Imaging , Swine , Animals , Molecular Imaging/methods , Molecular Imaging/instrumentation , Indoles/chemistry , Fluorescent Dyes/chemistry , Gelatin/chemistry , Neoplasms/diagnostic imaging , Neoplasms/surgery , Optical Imaging/methods , Optical Imaging/instrumentation , Benzenesulfonates
2.
Heliyon ; 10(19): e38004, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39386782

ABSTRACT

This study investigates the uptake of naturally occurring radionuclides (226Ra, 232Th, and 40K) from soil by rice plants in extensively cultivated regions in Bangladesh. It also evaluates the potential radiation risks associated with rice consumption by the Bangladeshi populace. High purity germanium (HPGe) gamma-ray spectrometry was employed to measure the concentrations of radionuclides in both soil and rice samples. For 40K, our results agree with the International Atomic Energy Agency's (IAEA) published value; however, the transfer factors (TF) for the other two radionuclides differ considerably. Despite the fact that the IAEA based its publication of TFs for 226Ra and 232Th on clay soil, the majority of the soil profile in the present study was silty clay with a little alkalinity. Moreover, the data obtained may have been impacted by the growing seasons, cultivation methods, and soil fertility. Additionally, the annual effective dose due to the ingestion of radioactivity resulting from rice consumption was evaluated and the results agree with UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), 2000. With a few exceptions, the excess lifetime cancer risk (ELCR) values for 226Ra, 232Th, and 40K were below the globally average permissible level (1 × 10-3). In light of this, the current study indicates that consuming rice does not pose an immediate health risk to the general public. By studying TFs among various rice varieties and geographical areas, scientists can develop models to forecast the possible radiation exposure from rice consumption and pinpoint activities or areas that require additional attention.

3.
Environ Monit Assess ; 196(11): 1038, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384632

ABSTRACT

Radionuclide and radon levels have been investigated in soil samples and residential environments within the Mungo and Nkam Divisions of the Littoral Region. These analyses employed gamma spectrometry facilitated by a NaI (Tl) detector for soil samples, yielding average activity concentrations of 226Ra, 232Th, and 40 K at 23.8, 72, and 105 Bq kg-1, respectively. Various radiological parameters were calculated to evaluate radiological hazards. Additionally, the indoor radon concentrations were quantified utilizing the CR-39 solid-state nuclear track detector (Radtrack), revealing an average concentration of 25 Bq m-3 and an associated inhalation dose of 0.66 mSv y-1. Risk assessments for lung cancer attributable to indoor radon exposure incorporated models such as the Harley model. An observed moderate correlation between indoor radon levels and external 226Ra concentrations implies that radon intrusion indoors might be substantially influenced by the 226Ra present in the subjacent soil, considering the construction of residential structures directly upon these terrains.


Subject(s)
Air Pollution, Indoor , Housing , Radiation Monitoring , Radon , Soil Pollutants, Radioactive , Radon/analysis , Cameroon , Soil Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Air Pollutants, Radioactive/analysis , Radium/analysis , Thorium/analysis , Soil/chemistry
4.
Environ Monit Assess ; 196(11): 1033, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377949

ABSTRACT

The aim of this study was to analyze the radiological hazards and the potential for generating acid mine drainage from the fine coal waste commonly stored in tailings dams. The magnetic susceptibility, natural gamma radioactivity, and net neutralization potential of the tailings are characterized. The results show that the fine coal waste has a uranium equivalent concentration (eU) of 46-48 Bq kg-1, which is 37.14% higher than the world average, and 39-47 Bq kg-1 equivalent concentration of thorium (eTh), which is 56.66% higher than the world average. Also, the absorbed gamma radiation dose rate is higher than the world average. Acid-base balance tests indicate that the net neutralization potential ranged from 0.38 to 2.44. The physical properties indicate a possible radiological risk, while the chemical properties show that generating and non-generating acid drainage can coexist in the fine dam tailings.


Subject(s)
Coal Mining , Uranium/analysis , Radiation Monitoring , Coal , Thorium/analysis , Mining , Gamma Rays , Acids
5.
Environ Monit Assess ; 196(11): 1024, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39370482

ABSTRACT

Agricultural soil contaminated by phosphogypsum pile stocked in plan air remains a major problem in M'Dhilla city southwestern of Tunisia. The present effort aimed to enhance the knowledge of trace elements and radioactivity abundance and to assess the corresponding environment. X-ray fluorescence spectroscopy was used to evaluate the trace elements, radioactive elements, and major element concentrations. Our finding revealed that the mean values of U and Th in all the soil profiles ranged from 0.283 to 2.875 mg.kg-1 and from 0.797 to 1.491 mg.kg-1 respectively. The statistical analyses indicated that uranium abundance has non-significant correlation with the most of trace metals; it shows a moderate correlated with Sr and inverse correlation with P2O5. Contamination factors indicate that the studied soil ranged from uncontaminated to significantly contaminated. Thus, the pollution load index values classify the sites from background values to high pollution sites. The findings of this study will help improve the environmental conditions of M'Dhilla city by addressing contamination issues through targeted interventions. The study's findings highlight the importance of a periodic environmental monitoring such as soil remediation in the study area. This research fills a critical gap in the current understanding of contamination management in this region.


Subject(s)
Agriculture , Environmental Monitoring , Soil Pollutants , Soil , Trace Elements , Tunisia , Trace Elements/analysis , Soil Pollutants/analysis , Soil/chemistry , Soil Pollutants, Radioactive/analysis
6.
Sci Rep ; 14(1): 22902, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358435

ABSTRACT

Yellow ochre is the basic material used in the manufacture of yellow oxide (a commercial product). Yellow ochre samples were taken from three different formations in southwestern Sinai: Abu Hamata, Um Bogma, and Abu Zarab. Yellow ochre occasionally exists in Abu Hamata Formation particularly in El Ferah area, associated with Fe-Mn ore in Wadi El Sahu (Um Bogma Formation) and in Himayer area (Abu Zarab Formation). The XRD analysis of the raw material reveals that they are mainly composed of goethite, which is associated with quartz and kaolinite in El Ferah area, hematite, kaolinite and quartz in Himayer area, and kaolinite, gypsum and quartz in Wadi El Sahu. The commercial product is mainly composed of goethite, quartz, and calcite. The heavy mineral investigation shows that some yellow ochre samples contain zircon and rare earth sulfate which may be responsible for the radioactivity of ochre due to their thorium and uranium content. The average values of specific radio-activities of most radionuclides in the samples of Himayer area I and II, and El Sahu I are higher than the respective world averages, while their activities are lower in El Ferah and El Sahu II. Th/U and Ra/U ratios exhibit vigorous changes in physico-chemical conditions during uranium leaching and deposition. Most of the radiological parameters in the ferruginous sediment and commercial product samples from El Ferah, El Sahu II, and Himayer II are lower than the recommended international values but higher than those from Himayer I and El Sahu I samples. The plotted hierarchical cluster analysis (HCA) exhibits that the main contributors for the hazards of these sediments and their commercial product are 238U, 232Th and 226Ra in Himayer I &II, commercial products, and El Ferah area, 232Th and 226Ra in El Sahu II , 232Th, 40K and 226Ra in El Sahu I.

7.
Heliyon ; 10(18): e37787, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315133

ABSTRACT

In this study, gamma activity concentrations, gross alpha and gross beta activity of natural radionuclides, and heavy metal concentrations were measured in eleven edible marine fish, four shellfish, two mollusks, and a common seaweed sample collected from a local sea fish market and sea beach area of the northern part of the Bay of Bengal, Kuakata, Bangladesh. Using HPGe gamma spectrometry, the activity concentrations of 238U, 232Th, and 40K were measured and found to be 19.7 ± 1.5 Bq/kg, 12.2 ± 0.9 Bq/kg, and 188 ± 15 Bq/kg, respectively, with the 232Th concentration surpassing that of 238U. The ZnS scintillation detector was used to assess the gross alpha and gross beta activity. The average gross alpha activity and gross beta activity were found to be 9.4 ± 1.4 Bq/kg and 26 ± 4 Bq/kg, respectively, with the latter attributed to beta emitting radionuclides's abundance. The activity concentrations of 238U, 232Th, and 40K in the analyzed samples varied in the order of Shellfish > Seaweed > Fish > Mollusks, Seaweed > Shellfish > Mollusks > Fish, and Seaweed > Shellfish > Fish > Mollusks. The annual effective dose due to consumption of analyzed seafood was found to be within the world limit of 2400 µSv/y recommended by UNSCEAR. The main contributor to the annual effective dose was 238U. The excess lifetime cancer risk (ELCR) results were below the permissible threshold of 10-3 for radiological risks. Furthermore, average concentrations of Zn and Mn were higher than WHO/FAO recommended values, and carcinogenic Pb, Cd, Cr, and Hg concentrations were below detection limits, according to heavy metal analysis performed by AAS. The average concentration of heavy metals in all of the seafood samples under investigation was in the order of Zn > Fe > Mn. The calculated hazard index (HI), target hazard quotient (THQ), and estimated daily intake (EDI) were compared to the permissible safety limits.

8.
Article in English | MEDLINE | ID: mdl-39317561

ABSTRACT

This study compared a multimodal image-guided robot and three-dimensionally (3D) printed templates for implanting iodine-125 (I125) radioactive seeds in patients with malignant tumours in the skull base and deep facial region. Seventeen patients who underwent I125 radioactive seed implantation between December 2018 and December 2019 were included. The operation time, intraoperative blood loss, and accuracy of seed implantation were compared between the multimodal image-guided robot-assisted implantation (experimental) group (n = 7) and 3D-printed template-assisted implantation (control) group (n = 10). In total, 291 seeds were implanted in the experimental group and 436 in the control group; the mean error of seed implantation accuracy was 1.95 ± 0.13 mm and 1.90 ± 0.08 mm, respectively (P = 0.309). The preparation time was 26.13 ± 5.28 min in the experimental group and 0 min in the control group, while the average operation time was 34.44 ± 6.39 min versus 43.70 ± 6.06 min, respectively. The intraoperative blood loss was 4.96 ± 1.76 ml (experimental) versus 8.97 ± 2.99 ml (control) (P = 0.123). Multimodal image-guided robot-assisted I125 radioactive seed implantation met the clinical requirements for treating malignant tumours in the skull base and deep facial regions.

9.
Article in English | MEDLINE | ID: mdl-39348020

ABSTRACT

The development of the nuclear industry in the countries of the Arabian Gulf demands an investigation of its potential impact on the environment and human activities. It should involve routine monitoring of radionuclide from existing nuclear facilities as well as modelling of accidental release of radioactivity. Agriculture is usually considered the human activity which is the most endangered with radioactive pollution. Although the traditional concept of low-developed agriculture in the United Arab Emirates has been already described from a radioecological point of view, herein, the recent trends of agriculture are recorded. Due to climatic changes and population increase, the use of saline lands will be more pressing. Apart from it, the risk assessment for nuclear events, which was formed mainly for temperate zones, neglected another aspect of arid zones which is underground water reservoirs refilled with episodic heavy rains. The sandy or saline soils are not an effective barrier for the migration of radionuclide deposited in topsoil. A hypersaline environment could prevent the adsorption of radionuclide on soil particles and allow their high bioavailability for halophyte plants. The new principal challenges in radioecological research in arid zones are impacts on (i) saline agriculture, (ii) underground water reservoirs, and (iii) proposal for countermeasures in order to minimise the impact of radioactive contamination.

10.
Article in English | MEDLINE | ID: mdl-39338125

ABSTRACT

Little is known about the aetiology of thymoma. This study aims to identify medical risk factors for thymoma as a systematic approach to new hypotheses on the aetiology of this disease. A European multi-centre case-control study was conducted from 1995 to 1997, including incident cases aged 35-69 years with thymoma. Altogether, we accepted 85 cases and 3350 controls, of which we interviewed 77 cases and 2071 population controls about constitutional factors, medical examinations, and former diseases. Odds ratios (ORs) with 95% confidence intervals (CI) were calculated. Medical examinations with X-ray or radiotherapy performed >20 times at least one year before the thymoma diagnosis indicated a possible risk factor for thymoma (OR 1.58, 95% CI 0.93-2.69). Having the first radiotherapy treatment at least one year before the thymoma diagnosis yielded an OR for thymoma of 2.39; 95% CI (0.96-5.99), and if it was at least five years before, the OR for thymoma was 2.81; 95% CI (1.03-7.72). Having a red/auburn hair colour was associated with thymoma, (OR 3.6, 95% CI 1.4-9.5) whereas having pigmented skin was slightly associated with thymoma (OR 1.8, 95% CI 0.8-3.8). Over twenty instances of X-ray examinations or radiotherapy were identified as potential risk factors for thymoma, along with certain constitutional factors. The observed correlations between benign tumours and thymoma could stem from an inherent predisposition to tumour development or result from detection bias. Given that this is the initial analytical study examining medical risk factors for thymoma, all of the results should be approached with caution, acknowledging the possibility that some findings might be incidental.


Subject(s)
Thymoma , Humans , Middle Aged , Case-Control Studies , Thymoma/epidemiology , Male , Risk Factors , Aged , Adult , Female , Europe/epidemiology , Thymus Neoplasms/epidemiology , Odds Ratio , Radiotherapy/adverse effects
11.
Ecotoxicol Environ Saf ; 284: 117003, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39244878

ABSTRACT

Weeds cause economic losses in cropping systems, leading to the use of 1.7 million tons of herbicides worldwide for weed control annually. Once in the environment, herbicides can reach non-target organisms, causing negative impacts on the ecosystem. Herbicide retention, transport, and degradation processes determine their environmental fate and are essential to assure the safety of these molecules. Radiometric strategies using carbon-14 herbicides (14C) are suitable approaches for determining herbicide absorption, translocation, degradation, retention, and transport in soil, plants, and water. In this work, we demonstrate how 14C-herbicides can be used from different perspectives. Our work focused on herbicide-plant-environment interactions when the herbicide is applied (a) through the leaf, (b) in the soil, and (c) in the water. We also quantified the mass balance in each experiment. 14C-mesotrione foliar absorption increased with oil and adjuvant addition (5-6 % to 25-46 %), and translocation increased only with adjuvant. More than 80 % of 14C-quinclorac and 14C-indaziflam remained in the soil and cover crops species absorbed less than 20 % of the total herbicides applied. In water systems, Salvinia spp. plants removed 10-18 % of atrazine from the water. Atrazine metabolism was not influenced by the presence of the plants. The radiometric strategies used were able to quantify the fate of the herbicide in different plant systems and the mass balance varied from 70 % to 130 %. Importantly, we highlight a critical and practical view of tracking herbicides in different matrices. This technique can aid scientists to explore other pesticides as environmental contaminants.


Subject(s)
Carbon Radioisotopes , Herbicides , Soil Pollutants , Soil Pollutants/analysis , Plant Leaves/metabolism , Quinolines , Environmental Monitoring/methods , Plant Weeds/drug effects , Soil/chemistry
12.
Cureus ; 16(8): e66703, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39262518

ABSTRACT

Marie Curie, a distinguished physicist and chemist, profoundly transformed the fields of radiology and medicine through her pioneering research on radioactivity. As the first woman to win a Nobel Prize and the only person to win in two different scientific fields, Physics (1903) and Chemistry (1911), Curie's achievements have left an indelible mark on medical science. This historical vignette explores her groundbreaking discoveries, including the isolation of radium and polonium, and her innovative applications of radioactivity in medicine, particularly in the treatment of cancer. It also delves into her relentless pursuit of knowledge and her role as a mentor, which inspired future generations of scientists and medical professionals. By examining Curie's contributions and enduring legacy, this article underscores her pivotal role in shaping modern medical practices and highlights her lasting influence on human health. Through this exploration, we aim to celebrate the life and achievements of a true pioneer whose work continues to inspire and drive advancements in medical science today.

13.
Appl Radiat Isot ; 214: 111517, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39270353

ABSTRACT

Gallium-72 is an important Comprehensive Nuclear-Test-Ban Treaty relevant radionuclide that arouses significant interest. However, the reported half-lives of 72Ga are discrepant. In the current work, three solution samples of different concentrations were prepared and sequentially measured by a high-purity Germanium (HPGe) spectrometer. The count rates as a function of time of the 834.1 keV and 630.0 keV γ-lines were followed for the half-life determination. Through mass normalization, the datasets of three samples are combined and the statistical uncertainties are reduced. Half-life values were derived from datasets of each sample and mass normalization and corresponding complete uncertainty budgets are presented. The final half-life determined for 72Ga is 13.94 (2) h, showing a deviation of 1.12% from the last nuclear data sheets (NDS) recommended value. Comparing with the values of previous publications, the result from this work is smaller than most results and consistent with the latest value which has one large uncertainty. A recommended value of 14.07 (3) h is estimated using the power-moderated mean (PMM) method.

14.
Appl Radiat Isot ; 212: 111471, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142227

ABSTRACT

The current study proposes a procedure to estimate the activity concentration of natural radionuclides and to optimize passive shielding solutions for HPGe detectors using adjoint Monte Carlo (MC) simulation technique of Geant4 for the first time. The background spectrum is acquired for 1.56 × 106 s using an HPGe detector model (GC3020), set inside a shielding solution, during 2021-2022 to estimate the activity concentration of natural radionuclides inside the shielding. While, a background spectrum for 65,000 s is acquired with shielding removed to estimate the concentration of natural radionuclides in the building materials of the laboratory. The detector design used in the simulations is validated by comparing computed and measured Full Energy Peak Efficiency (FEPE) for point sources 241Am, 152Eu, 137Cs, 133Ba, and 60Co. Adjoint MC simulations are used to compute the activity concentration of natural radionuclides assuming an isotropic distribution. The activity concentration of 40K, 226Ra and 232Th in the building material is found to be 524 ± 140, 83 ± 20 and 65 ± 18 Bqkg-1, respectively. The computed values are found in good agreement with the published data. The natural radioactivity levels of 40K, 226Ra and 232Th measured in lead shielding are 155.7 ± 0.1 mBqkg-1, 24 ± 13 mBqkg-1 and 33 ± 17 mBqkg-1 respectively. The radiological risks arising due to natural radioactivity is assessed by calculating radium equivalent activity (Raeq), indoor radiation hazard index (Hin) and annual effective dose equivalent. All the radiological parameters are found below their permissible limits and building materials may be considered radiologically safe. The optimal lead shield thickness for the detector is determined to be 12 cm, resulting in reduction of background signal by two orders of magnitude compared to an unshielded detector. The adjoint MC simulations in Geant4 are 103-104 times more rapid as compared to normal simulations for shield optimization of HPGe detectors and therefore, are identified as viable computing solution to calculate the activity of the background radiation.

15.
Environ Sci Technol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105719

ABSTRACT

Under climatic warming, glaciers are becoming a secondary source of atmospheric contaminants originally released into the environment decades ago. This phenomenon has been well-documented for glaciers near emission sources. However, less is known about polar ice sheets and ice caps. Radionuclides are one of the contaminants that can be remobilised through ice melting and accumulate in cryoconite material on the surface of glaciers. To understand the cycling of radionuclides in polar glacial contexts, we evaluate the radioactivity of cryoconite samples from Flade Isblink, a High Arctic ice cap in northeast Greenland. The measured radioactivity is among the highest reported across the High Arctic and the highest from Greenland. The high variability observed among the samples is explained by considering the different macroscopic features of single cryoconite deposits. The radioactivity source is compatible with the stratospheric reservoir established during atmospheric nuclear tests and with weapons-grade fissile fuel, likely originating from Novaya Zemlya proving grounds. This study shows that the ability of cryoconite to accumulate radioactivity in remote areas is undisputed, highlighting the need for a deeper understanding of the remobilisation of radioactive species in polar glacial contexts.

16.
Materials (Basel) ; 17(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39124477

ABSTRACT

In this paper, an assessment of the natural radioactivity level, radon exhalation, metal contamination, and mineralogy of a granodiorite rock sample from Stilo, in the Calabria region, Southern Italy is presented as a case study. This rock was employed as a building material in the area under study. The specific activity of 226Ra, 232Th and 40K natural radioisotopes was assessed through high-purity germanium (HPGe) gamma-ray spectrometry. Then, several indices such as the absorbed gamma dose rate (D), the annual effective dose equivalent (AEDE), the activity concentration index (ACI) and the alpha index (Iα), were quantified to determine any potential radiological health risk related to radiation exposure from the analyzed rock. Furthermore, E-PERM electret ion chambers and inductively coupled plasma mass spectrometry (ICP-MS) measurements were carried out to properly quantify the radon exhalation rate and any possible metal pollution, respectively. In particular, to further address metal pollution factors, the geo-accumulation index (Igeo) was calculated to properly address the toxicity levels of the ecosystem originating from the detected metals. Finally, with the aim of successfully discriminating the provenance of such naturally occurring radionuclides, a combined approach involving X-ray diffraction (XRD) and µ-Raman spectroscopy was employed for the identification of the main radioisotope-bearing minerals characterizing the investigated granodiorite. The results achieved in this case study can be taken as the basis for further inquiries into background levels of radioactivity and chemical contamination in natural stone employed as building materials.

17.
Sci Total Environ ; 950: 175381, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39122033

ABSTRACT

There is considerable uncertainty regarding radiation's effects on biodiversity in natural complex ecosystems typically subjected to multiple environmental disturbances and stresses. In this study we characterised the relationships between soil microbial communities and estimated total absorbed dose rates to bacteria, grassy vegetation and trees in the Red Forest region of the Chornobyl Exclusion Zone. Samples were taken from sites of contrasting ecological histories and along burn and no burn areas following a wildfire. Estimated total absorbed dose rates to bacteria reached levels one order of magnitude higher than those known to affect bacteria in laboratory studies. Sites with harsher ecological conditions, notably acidic pH and low soil moisture, tended to have higher radiation contamination levels. No relationship between the effects of fire and radiation were observed. Microbial groups that correlated with high radiation sites were mostly classified to taxa associated with high environmental stress habitats or stress resistance traits. Distance-based linear models and co-occurrence analysis revealed that the effects of radiation on the soil microbiome were minimal. Hence, the association between high radiation sites and specific microbial groups is more likely a result of the harsher ecological conditions in these sites, rather than due to radiation itself. In this study, we provide a starting point for understanding the relationship between soil microbial communities and estimated total absorbed radiation dose rates to different components of an ecosystem highly contaminated with radiation. Our results suggest that soil microbiomes adapted to natural soil conditions are more likely to be resistant to ionising radiation than expected from laboratory studies, which demonstrates the importance of assessing the impact of ionising radiation on soil microbial communities under field conditions.


Subject(s)
Chernobyl Nuclear Accident , Microbiota , Soil Microbiology , Soil Pollutants, Radioactive , Wildfires , Soil Pollutants, Radioactive/analysis , Radiation Monitoring , Soil/chemistry , Bacteria/classification , Ukraine , Forests
18.
Environ Monit Assess ; 196(9): 847, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190160

ABSTRACT

This investigation quantifies the activity concentrations of natural radionuclides (226Ra, 232Th, and 40K) in the soils and certain rocks of the Koytash-Ugam Range, Uzbekistan, and assesses their radiological risks. Gamma-spectrometric analysis of soil and rock samples revealed activity concentrations ranging from 456.2 ± 56.0 to 813.9 ± 76.0 Bq kg-1 for 40K, 18.2 ± 6.3 to 70.0 ± 12.0 Bq kg-1 for 226Ra, and 30.1 ± 2.9 to 57.9 ± 10 Bq kg-1 for 232Th. This data indicates a heterogeneous distribution of radionuclides, informing radiation safety and health risk assessments on a global scale. The calculation of radiological hazard indices, including the alpha-index (ranging from 0.09 to 0.35), gamma-index (ranging from 0.40 to 0.73), and both internal (ranging from 0.40 to 0.54) and external (ranging from 0.36 to 0.54) hazard indices, was undertaken to ascertain potential health risks. The radium equivalent activity ranged from 108.4 to 199.3 Bq kg-1, and the absorbed dose rates were 51.0-93.3 nGy h-1 indoors and 96.6-178.2 nGy h-1 outdoors. These metrics underlie the estimated annual effective dose of 536.5-988.5 × 10-3 mSv y-1, highlighting the variability in radiation exposure. Additionally, the potential lifetime cancer risk was projected at 1770.4 to 3262.0 per million, with an annual gonadal dose equivalent of 361.9 to 655.5 µSv y-1, reflecting natural background radiation influence. The results underscore the importance of safe material use in construction and the necessity for routine natural radioactivity monitoring. Radon flux density (RFD) values within acceptable construction limits (26-176 mBq m-2 s-1) suggest the area's suitability for development, considering recommended safety guidelines. This study not only aids local environmental and public health frameworks but also enriches the international knowledge base, facilitating comparative studies for the advancement of global radiation protection standards. Through a detailed examination of radionuclide distribution in an under-researched area, our research highlights the critical need for integrated international approaches to natural radiological hazard assessment.


Subject(s)
Radiation Monitoring , Radium , Soil Pollutants, Radioactive , Thorium , Soil Pollutants, Radioactive/analysis , Uzbekistan , Radium/analysis , Thorium/analysis , Soil/chemistry , Risk Assessment , Potassium Radioisotopes/analysis , Background Radiation
19.
J Environ Radioact ; 279: 107497, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39178505

ABSTRACT

Fractionation plays an important role in the distribution of radioactive isotopes on particles formed in a nuclear explosion. This study examines the variables that affect radionuclide fractionation in surface nuclear explosions, including nuclear explosion yield, nuclear charge, solidification temperature, solidification time, and geological condition. The distribution of radionuclides is calculated using the improved Freiling radial-distribution model and the Bateman equation to describe radionuclide decay. Quantitative analysis is conducted to examine the impact of various influencing factors on the total ß radioactivity. Specifically, the mass chains 89 and 137, as well as mass chains 95 and 144, which represent the radioactive surface and volume distributions are investigated respectively. The results show that the total ß radioactivity increases as the explosion yield increases and as the solidification temperature decreases, and increases slightly as the solidification time increases. The radioactivity will concentrate more on the larger size particles under harder geological conditions. The influencing factors have greater impacts on the radioactive volume distributions than on the surface distributions, and the variations in distinct mass chains under the same influencing factors are inconsistent. Overall, the solidification temperature and the geological condition have significant impacts on the distribution of particle radioactivity, followed by the effects of explosion yield and nuclear charge. The distribution of particle radioactivity is not significantly affected by the solidification time.


Subject(s)
Explosions , Radiation Monitoring , Radiation Monitoring/methods , Radioisotopes/analysis , Nuclear Weapons , Chemical Fractionation/methods
20.
Methods Mol Biol ; 2839: 225-231, 2024.
Article in English | MEDLINE | ID: mdl-39008256

ABSTRACT

Radiolabeling enables the quantitation of newly synthesized heme and porphyrin, allowing us to distinguish heme synthesis rates from total cellular heme. Here, we describe a protocol for labeling heme with 14C-glycine or ALA and the sequential extraction of heme and porphyrin from the same samples for quantitation by liquid scintillation.


Subject(s)
Aminolevulinic Acid , Carbon Radioisotopes , Glycine , Heme , Porphyrins , Heme/chemistry , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/metabolism , Carbon Radioisotopes/chemistry , Porphyrins/chemistry , Glycine/chemistry , Isotope Labeling/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL