Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
BMC Cancer ; 24(1): 1094, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227899

ABSTRACT

BACKGROUND: Dysregulated splicing events are a common phenomenon in cancer with the Serine-arginine-rich splicing factor (SRSF) family emerging as pivotal regulators of gene expression, exerting influence over constitutive and alternative splicing processes. Although aberrations in a few SRSF family members have been implicated in various cancers, the comprehensive roles of other family constituents remain underexplored. METHODS: This study delves into the expression profile of the entire SRSF family (SRSF1-SRSF12) in 23 cancerous cell lines originating from diverse tissues using quantitative Real-Time PCR. Further, the transcript levels of the SRSF family were examined in oral cancer patient samples stratified into Pre-cancer (n = 15), Early cancer (n = 11), Late cancer (n = 14), and adjacent non-tumor tissues (n = 26) as controls. The results were corroborated by a parallel investigation utilizing the transcriptomics data of oral squamous cell carcinoma (OSCC) patients (n = 319) and controls (n = 35) available in The Cancer Genome Atlas (TCGA) database. RESULTS: Our investigation reveals a notable upregulation in the expression levels of key splicing factors, namely SRSF3, SRSF9, and SRSF10 in all oral cancer cell lines (SCC-4, UM-SCC-84, CAL33, SAS-H1). Conversely, no significant associations between SRSF family members and other cancer cell lines were discerned. Further, the expression profile of the SRSF family in oral cancer patient samples revealed significant upregulation of SRSF1, SRSF3, SRSF7, SRSF9, SRSF10, and SRSF11 in patients with late-stage oral cancer compared to controls. Transcriptomics data from TCGA database demonstrated remarkable upregulation of SRSF1, SRSF4, SRSF9, SRSF10, and SRSF11 in OSCC patients. CONCLUSION: Collectively our results underscore the critical involvement of SRSF family members in the context of oral cancer, highlighting their potential as key players in the altered splicing dynamics associated with cancer progression.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Serine-Arginine Splicing Factors , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Female , Male , Alternative Splicing , Middle Aged , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Gene Expression Profiling
2.
Mol Oncol ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258426

ABSTRACT

In advanced prostate cancer (PC), in particular after acquisition of resistance to androgen receptor (AR) signaling inhibitors (ARSI), upregulation of AR splice variants compromises endocrine therapy efficiency. Androgen receptor splice variant-7 (ARV7) is clinically the most relevant and has a distinct 3' untranslated region (3'UTR) compared to the AR full-length variant, suggesting a unique post-transcriptional regulation. Here, we set out to evaluate the applicability of the ARV7 3'UTR as a therapy target. A common single nucleotide polymorphism, rs5918762, was found to affect the splicing rate and thus the expression of ARV7 in cellular models and patient specimens. Serine/arginine-rich splicing factor 9 (SRSF9) was found to bind to and increase the inclusion of the cryptic exon 3 of ARV7 during the splicing process in the alternative C allele of rs5918762. The dual specificity protein kinase CLK2 interferes with the activity of SRSF9 by regulating its expression. Inhibition of the Cdc2-like kinase (CLK) family by the small molecules cirtuvivint or lorecivivint results in the decreased expression of ARV7. Both inhibitors show potent anti-proliferative effects in enzalutamide-treated or -naive PC models. Thus, targeting aberrant alternative splicing at the 3'UTR of ARV7 by disturbing the CLK2/SRSF9 axis might be a valuable therapeutic approach in late stage, ARSI-resistant PC.

3.
J Autoimmun ; 149: 103306, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265192

ABSTRACT

BACKGROUND: Alternative splicing (AS) and intron retention (IR) implicated in multiple pathophysiological processes, have rarely been reported in systemic sclerosis (SSc). METHODS: We integrated bulk RNA-seq and 4D label-free mass spectrometry to perform a multi-omics analysis of AS and IR in SSc skin tissue and fibroblasts. RMATS and iREAD were used to identify AS and IR, which were validated by real-time PCR. Spearman correlation and the LASSO method were employed to assess correlations among clinical features, introns, splicing factors (regulators of AS) and proteins. FINDINGS: AS profiles showed distinct alterations in SSc skin tissue, with the most pronounced changes occurring in IR. AS and IR were associated with total modified Rodnan skin score (mRSS) and local skin score. Upon TGF-ß stimulation, fibroblasts exhibited significant alterations in IR profiles, affecting genes related to fibroblast proliferation and collagen fibril organization. A comprehensive integrated analysis of introns, exons, and proteome profiles revealed that IR exerted a negative impact on protein expression, with certain changes being under intronic control. RT-PCR confirmed the presence of intron and exon-derived sequences of CTTN, OGA, MED16 and PHYKPL. Additionally, notable changes were observed in the regulatory network of splicing factors in SSc skin tissues. These factors are also involved in fibrosis pathways and correlated with clinical features. CONCLUSION: Totally, abnormal AS, IR profiles and splicing factors were identified in SSc, altered IRs and splicing factors participated in fibrosis-related pathways. IR exerted a negative impact on protein expression in TGF-ß-stimulated fibroblasts. Clarification of the IR mechanisms will provide new insights into the pathophysiology of SSc.

4.
Tunis Med ; 102(9): 513-520, 2024 Sep 05.
Article in French | MEDLINE | ID: mdl-39287342

ABSTRACT

INTRODUCTION: The grading of glial tumors is based on morphological and sometimes on molecular features. Many markers have been assessed in order to grade the glial tumours without a real consensus. Some authors reported that SRSF1, a spiling factor, presents an expression correlated to the tumours grades. AIM: In this study, we aimed to assess the utility of the SRSF1 into the grading of gliomas based on its immunohistochemical expression. METHODS: The authors conducted a meta-analysis under the PRISMA guidelines during a 10-year-period (2013-2023). The Meta-Disc software 5.4 (free version) was used. Q test and I2 statistics were carried out to explore the heterogeneity among studies. Meta-regression was performed in case of significant heterogeneity. Publication bias was assessed using the funnel plot test and the Egger's test (free version JASP). RESULTS: According to the inclusion criteria, 4 studies from 193 articles were included. The pooled SEN, SPE and DOR accounted respectively for 0.592, 0.565 and 1.852. The AUC was estimated to 0.558 suggesting a bad diagnostic accuracy. The heterogeneity in the pooled SEN and SPE was statistically significant. The meta-regression analysis focusing on the technique used, the clones, the dilution, the interpretation technique revealed no covariate factors (P>0.05). CONCLUSION: Even if this meta-analysis highlighted the absence of a real diagnostic utility of the SRSF1 in grading the glial tumours, the heterogeneity revealed reinforces the need for more prospective studies performed according to the quality assessment criteria.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Glioma , Neoplasm Grading , Serine-Arginine Splicing Factors , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/diagnosis , Glioma/pathology , Glioma/genetics , Glioma/diagnosis , Glioma/metabolism , Neoplasm Grading/methods , Serine-Arginine Splicing Factors/analysis , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
5.
FEBS Lett ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300280

ABSTRACT

Heart failure (HF) is highly prevalent. Mechanisms underlying HF remain incompletely understood. Splicing factors (SF), which control pre-mRNA alternative splicing, regulate cardiac structure and function. This study investigated regulation of the splicing factor heterogeneous nuclear ribonucleoprotein-L (hnRNPL) in the failing heart. hnRNPL protein increased in left ventricular tissue from mice with transaortic constriction-induced HF and from HF patients. In left ventricular tissue, hnRNPL was detected predominantly in nuclei. Knockdown of the hnRNPL homolog Smooth in Drosophila induced cardiomyopathy. Computational analysis of predicted mouse and human hnRNPL binding sites suggested hnRNPL-mediated alternative splicing of tropomyosin, which was confirmed in C2C12 myoblasts. These findings identify hnRNPL as a sensor of cardiac dysfunction and suggest that disturbances of hnRNPL affect alternative splicing in HF.

6.
Aging Cell ; : e14301, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118304

ABSTRACT

Defects in the splicing machinery are implicated in various diseases, including cancer. We observed a general reduction in the expression of spliceosome components and splicing regulators in human cell lines undergoing replicative, stress-induced, and telomere uncapping-induced senescence. Supporting the view that defective splicing contributes to senescence, splicing inhibitors herboxidiene, and pladienolide B induced senescence in normal and cancer cell lines. Furthermore, depleting individual spliceosome components also promoted senescence. All senescence types were associated with an alternative splicing transition from the MDM4-FL variant to MDM4-S. The MDM4 splicing shift was reproduced when splicing was inhibited, and spliceosome components were depleted. While decreasing the level of endogenous MDM4 promoted senescence and cell survival independently of the MDM4-S expression status, cell survival was also improved by increasing MDM4-S. Overall, our work establishes that splicing defects modulate the alternative splicing of MDM4 to promote senescence and cell survival.

7.
Int J Oncol ; 65(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39129306

ABSTRACT

Alternative RNA splicing provides cells with transcriptomic and proteomic diversity by adding another layer of regulation to gene expression. Accumulating evidence has revealed that defects in alternative splicing contribute to a variety of features of cancer development, including the modulation of cancer heterogeneity, evasion of apoptosis of cancer cells, rewiring cancer metabolism and facilitating cancer metastasis via fine­tuning the epithelial­to­mesenchymal transition process. In this review, well­known aberrant alternative splicing events associated with multiple aspects of cancer progression were presented based on available data obtained from an extensive literature search used to construct splicing regulatory networks for each of these events. The study aims to provide a more comprehensive understanding of cancer­associated splicing networks and more precise guidance for targeting these events for cancer treatment.


Subject(s)
Alternative Splicing , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Regulatory Networks
8.
Curr Gene Ther ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39075952

ABSTRACT

Alternative splicing (AS) of pre-mRNA occurs widely in human genes to produce multiple isoforms with different or even opposite functions. Aberrant AS is often associated with gene mutations and can be corrected by gene therapy. Oral diseases are important public health problems worldwide. Accumulated pieces of evidence demonstrate that AS of pathogenic genes plays key roles in some oral diseases. However, considering the extensiveness and complexity of AS, it may affect the initiation and development of oral diseases deeply and widely. This review describes the diversity of AS and resulting isoforms in genetic, infectious, and malignant oral diseases and highlights the key roles of AS in determining the function of isoforms and the occurrence and progression of these diseases. The studies of alternative splicing may provide great opportunities for the understanding and treatment of oral diseases.

9.
Cancer Cell Int ; 24(1): 257, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034387

ABSTRACT

The serine/arginine-rich splicing factors (SRSFs) play an important role in regulating the alternative splicing of precursor RNA (pre-RNA). During this procedure, introns are removed from the pre-RNA, while the exons are accurately joined together to produce mature mRNA. In addition, SRSFs also involved in DNA replication and transcription, mRNA stability and nuclear export, and protein translation. It is reported that SRSFs participate in hematopoiesis, development, and other important biological process. They are also associated with the development of several diseases, particularly cancers. While the basic physiological functions and the important roles of SRSFs in solid cancer have been extensively reviewed, a comprehensive summary of their significant functions in normal hematopoiesis and hematopoietic malignancies is currently absent. Hence, this review presents a summary of their roles in normal hematopoiesis and hematopoietic malignancies.

10.
Cancers (Basel) ; 16(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38893242

ABSTRACT

Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.

11.
Sci Rep ; 14(1): 14397, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909100

ABSTRACT

Alternative splicing plays a crucial role in increasing the diversity of mRNAs expressed in the genome. Serine/arginine-rich splicing factor 3 (SRSF3) is responsible for regulating the alternative splicing of its own mRNA and ensuring that its expression is balanced to maintain homeostasis. Moreover, the exon skipping of SRSF3 leads to the production of a truncated protein instead of a frameshift mutation that generates a premature termination codon (PTC). However, the precise regulatory mechanism involved in the splicing of SRSF3 remains unclear. In this study, we first established a platform for coexpressing full-length SRSF3 (SRSF3-FL) and SRSF3-PTC and further identified a specific antibody against the SRSF3-FL and truncated SRSF3 (SRSF3-TR) proteins. Next, we found that exogenously overexpressing SRSF3-FL or SRSF3-PTC failed to reverse the effects of digoxin, caffeine, or both in combination on this molecule and its targets. Endoplasmic reticulum-related pathways, transcription factors, and chemicals such as palmitic acid and phosphate were found to be involved in the regulation of SRSF3 expression. The downregulation of SRSF3-FL by palmitic acid and phosphate was mediated via different regulatory mechanisms in HeLa cells. In summary, we provide new insights into the altered expression of the SRSF3-FL and SRSF3-TR proteins for the identification of the functions of SRSF3 in cells.


Subject(s)
Alternative Splicing , Serine-Arginine Splicing Factors , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Humans , HeLa Cells , Protein Stability , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Mol Cell ; 84(13): 2573-2589.e5, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38917795

ABSTRACT

Efficient targeted control of splicing is a major goal of functional genomics and therapeutic applications. Guide (g)RNA-directed, deactivated (d)Cas CRISPR enzymes fused to splicing effectors represent a promising strategy due to the flexibility of these systems. However, efficient, specific, and generalizable activation of endogenous exons using this approach has not been previously reported. By screening over 300 dCasRx-splicing factor fusion proteins tethered to splicing reporters, we identify dCasRx-RBM25 as a potent activator of exons. Moreover, dCasRx-RBM25 efficiently activates the splicing of ∼90% of targeted endogenous alternative exons and displays high on-target specificity. Using gRNA arrays for combinatorial targeting, we demonstrate that dCasRx-RBM25 enables multiplexed activation and repression of exons. Using this feature, the targeting of neural-regulated exons in Ptpb1 and Puf60 in embryonic stem cells reveals combinatorial effects on downstream alternative splicing events controlled by these factors. Collectively, our results enable versatile, combinatorial exon-resolution functional assays and splicing-directed therapeutic applications.


Subject(s)
Alternative Splicing , CRISPR-Cas Systems , Exons , RNA Splicing Factors , RNA-Binding Proteins , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , HEK293 Cells , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Animals , Mice
13.
Mol Med ; 30(1): 62, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760666

ABSTRACT

Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).


Subject(s)
Alternative Splicing , Hematologic Neoplasms , Humans , Hematologic Neoplasms/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Mutation , Animals , Gene Expression Regulation, Neoplastic , Epigenesis, Genetic , Spliceosomes/metabolism , Spliceosomes/genetics , Signal Transduction/genetics
14.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791320

ABSTRACT

Nuclear speckles are compartments enriched in splicing factors present in the nucleoplasm of eucaryote cells. Speckles have been studied in mammalian culture and tissue cells, as well as in some non-mammalian vertebrate cells and invertebrate oocytes. In mammals, their morphology is linked to the transcriptional and splicing activities of the cell through a recruitment mechanism. In rats, speckle morphology depends on the hormonal cycle. In the present work, we explore whether a similar situation is also present in non-mammalian cells during the reproductive cycle. We studied the speckled pattern in several tissues of a viviparous reptile, the lizard Sceloporus torquatus, during two different stages of reproduction. We used immunofluorescence staining against splicing factors in hepatocytes and oviduct epithelium cells and fluorescence and confocal microscopy, as well as ultrastructural immunolocalization and EDTA contrast in Transmission Electron Microscopy. The distribution of splicing factors in the nucleoplasm of oviductal cells and hepatocytes coincides with the nuclear-speckled pattern described in mammals. Ultrastructurally, those cell types display Interchromatin Granule Clusters and Perichromatin Fibers. In addition, the morphology of speckles varies in oviduct cells at the two stages of the reproductive cycle analyzed, paralleling the phenomenon observed in the rat. The results show that the morphology of speckles in reptile cells depends upon the reproductive stage as it occurs in mammals.


Subject(s)
Cell Nucleus , Hepatocytes , Lizards , Animals , Female , Lizards/anatomy & histology , Lizards/physiology , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Hepatocytes/cytology , Viviparity, Nonmammalian/physiology , Oviducts/metabolism , Oviducts/ultrastructure , Oviducts/cytology
15.
Annu Rev Phytopathol ; 62(1): 173-192, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38691872

ABSTRACT

Alternative splicing (AS) is an evolutionarily conserved cellular process in eukaryotes in which multiple messenger RNA (mRNA) transcripts are produced from a single gene. The concept that AS adds to transcriptome complexity and proteome diversity introduces a new perspective for understanding how phytopathogen-induced alterations in host AS cause diseases. Recently, it has been recognized that AS represents an integral component of the plant immune system during parasitic, commensalistic, and symbiotic interactions. Here, I provide an overview of recent progress detailing the reprogramming of plant AS by phytopathogens and the functional implications on disease phenotypes. Additionally, I discuss the vital function of AS of immune receptors in regulating plant immunity and how phytopathogens use effector proteins to target key components of the splicing machinery and exploit alternatively spliced variants of immune regulators to negate defense responses. Finally, the functional association between AS and nonsense-mediated mRNA decay in the context of plant-pathogen interface is recapitulated.


Subject(s)
Alternative Splicing , Host-Pathogen Interactions , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/immunology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Plant Immunity/genetics , Plants/microbiology , Plants/immunology
16.
Mol Syst Biol ; 20(6): 676-701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664594

ABSTRACT

Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFß pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.


Subject(s)
Alternative Splicing , Artificial Intelligence , Machine Learning , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Oligonucleotides, Antisense/genetics , Cell Movement/genetics , Spliceosomes/metabolism , Spliceosomes/genetics , Oligonucleotides/genetics , Female
17.
Wiley Interdiscip Rev RNA ; 15(2): e1838, 2024.
Article in English | MEDLINE | ID: mdl-38509732

ABSTRACT

Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/genetics , RNA Splicing Factors/metabolism , Neuro-Oncological Ventral Antigen
18.
Article in English | MEDLINE | ID: mdl-38459706

ABSTRACT

Hepatitis B virus (HBV), a vaccine-avoidable infection, is a health concern worldwide, leading to liver disorders such as acute self-constraint and chronic hepatitis, liver failure, hepatic cirrhosis, and even hepatocellular carcinoma if untreated. 'Immunogeneticprofiling', genetic variations of the pro- and anti-inflammatory cytokines responsible for regulating the immune responses, cause person-to-person differences and impact the clinical manifestation of the disease. The current experimental-bioinformatics research was conducted to examine whether promoteric IL-18-rs187238 C > G and -rs1946518 T > G and intronic CD14-rs2569190 A > G variations are associated with chronic HBV. A total of 400 individuals (200 in each case and control group) participated in the study and were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The data was also assessed bioinformatics-wise for conservation, genomic transcription and splicing, and protein interactions. Findings proposed that unlike the IL-18-rs1946518 T > G and CD14-rs2569190 A > G, the IL-18-rs187238 C > G is a protector against chronic HBV (odds ratio [OR] = 0.62, 95% confidence intervals [CI]: 0.46-0.83, and p = 0.002). The TG/CC/AA, TG/CC/AG, TT/CC/AG, and GG/CC/AA combined genotypes significantly increased chronic HBV risk (p < 0.05), while the IL-18 G/T and G/G haplotypes lessened it (p < 0.05). Moreover, IL-18-rs1946518 T > G is in the protected genomic regions across mammalian species. In contrast to the IL-18-rs1946518 T > G, IL-18-rs187238 C > G is likely to create novel binding sites for transcription factors, and the CD14-rs2569190 A > G presumably changed the ribonucleic acid splicing pattern. More research on larger populations and other ethnicities is required to authenticate these results.

19.
Adv Sci (Weinh) ; 11(14): e2308496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308190

ABSTRACT

During maternal-to-zygotic transition (MZT) in the embryo, mRNA undergoes complex post-transcriptional regulatory processes. However, it is unclear whether and how alternative splicing plays a functional role in MZT. By analyzing transcriptome changes in mouse and human early embryos, dynamic changes in alternative splicing during MZT are observed and a previously unnoticed process of zygotic splicing activation (ZSA) following embryonic transcriptional activation is described. As the underlying mechanism of RNA splicing, splicing factors undergo dramatic maternal-to-zygotic conversion. This conversion relies on the key maternal factors BTG4 and PABPN1L and is zygotic-transcription-dependent. CDK11-dependent phosphorylation of the key splicing factor, SF3B1, and its aggregation with SRSF2 in the subnuclear domains of 2-cell embryos are prerequisites for ZSA. Isoforms generated by erroneous splicing, such as full-length Dppa4, hinder normal embryonic development. Moreover, alternative splicing regulates the conversion of early embryonic blastomeres from totipotency to pluripotency, thereby affecting embryonic lineage differentiation. ZSA is an essential post-transcriptional process of MZT and has physiological significance in generating new life. In addition to transcriptional activation, appropriate expression of transcript isoforms is also necessary for preimplantation embryonic development.


Subject(s)
Transcriptome , Zygote , Humans , Animals , Mice , Transcriptome/genetics , Zygote/metabolism , Embryonic Development/genetics , RNA Splicing , Protein Isoforms/genetics , Poly(A)-Binding Proteins/genetics , Poly(A)-Binding Proteins/metabolism , Nuclear Proteins/genetics
20.
Mar Biotechnol (NY) ; 26(1): 103-115, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38206418

ABSTRACT

Alkalinity is regarded as one of the primary stressors for aquatic animals in saline-alkaline water. Alternative splicing (AS) can significantly increase the diversity of transcripts and play key roles in stress response; however, the studies on AS under alkalinity stress of crustaceans are still limited. In the present study, we devoted ourselves to the study of AS under acute alkalinity stress at control (50 mg/L) and treatment groups (350 mg/L) by RNA-seq in pacific white shrimp (Litopenaeus vannamei). We identified a total of 10,556 AS events from 4865 genes and 619 differential AS (DAS) events from 519 DAS genes in pacific white shrimp. Functional annotation showed that the DAS genes primarily involved in spliceosome. Five splicing factors (SFs), U2AF1, PUF60, CHERP, SR140 and SRSF2 were significantly up-regulated and promoted AS. Furthermore, alkalinity activated the Leukocyte transendothelial migration, mTOR signaling pathway and AMPK signaling pathway, which regulated MAPK1, EIF3B and IGFP-RP1 associated with these pathways. We also studied three SFs (HSFP1, SRSF2 and NHE-RF1), which underwent AS to form different transcript isoforms. The above results demonstrated that AS was a regulatory mechanism in pacific white shrimp in response to acute alkalinity stress. SFs played vital roles in AS of pacific white shrimp, such as HSFP1, SRSF2 and NHE-RF1. DAS genes were significantly modified in immunity of pacific white shrimp to cope with alkalinity stress. This is the first study on the response of AS to acute alkalinity stress, which provided scientific basis for AS mechanism of crustaceans response to alkalinity stress.


Subject(s)
Alternative Splicing , Penaeidae , Animals
SELECTION OF CITATIONS
SEARCH DETAIL