Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.024
Filter
2.
BMC Psychol ; 12(1): 324, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831468

ABSTRACT

Cognitive functions, such as learning and memory processes, depend on effective communication between brain regions which is facilitated by white matter tracts (WMT). We investigated the microstructural properties and the contribution of WMT to extinction learning and memory in a predictive learning task. Forty-two healthy participants completed an extinction learning paradigm without a fear component. We examined differences in microstructural properties using diffusion tensor imaging to identify underlying neural connectivity and structural correlates of extinction learning and their potential implications for the renewal effect. Participants with good acquisition performance exhibited higher fractional anisotropy (FA) in WMT including the bilateral inferior longitudinal fasciculus (ILF) and the right temporal part of the cingulum (CNG). This indicates enhanced connectivity and communication between brain regions relevant to learning and memory resulting in better learning performance. Our results suggest that successful acquisition and extinction performance were linked to enhanced structural connectivity. Lower radial diffusivity (RD) in the right ILF and right temporal part of the CNG was observed for participants with good acquisition learning performance. This observation suggests that learning difficulties associated with increased RD may potentially be due to less myelinated axons in relevant WMT. Also, participants with good acquisition performance were more likely to show a renewal effect. The results point towards a potential role of structural integrity in extinction-relevant WMT for acquisition and extinction.


Subject(s)
Diffusion Tensor Imaging , Extinction, Psychological , White Matter , Humans , Male , Female , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Adult , Young Adult , Extinction, Psychological/physiology , Learning/physiology , Neural Pathways/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/anatomy & histology , Anisotropy
3.
PLoS One ; 19(6): e0305066, 2024.
Article in English | MEDLINE | ID: mdl-38843228

ABSTRACT

A large body of evidence has shown that treatments that interfere with memory consolidation become ineffective when animals are subjected to an intense learning experience; this effect has been observed after systemic and local administration of amnestic drugs into several brain areas, including the striatum. However, the effects of amnestic treatments on the process of extinction after intense training have not been studied. Previous research demonstrated increased spinogenesis in the dorsomedial striatum, but not in the dorsolateral striatum after intense training, indicating that the dorsomedial striatum is involved in the protective effect of intense training. To investigate this issue, male Wistar rats, previously trained with low, moderate, or high levels of foot shock, were used to study the effect of tetrodotoxin inactivation of dorsomedial striatum on memory consolidation and subsequent extinction of inhibitory avoidance. Performance of the task was evaluated during seven extinction sessions. Tetrodotoxin produced a marked deficit of memory consolidation of inhibitory avoidance trained with low and moderate intensities of foot shock, but normal consolidation occurred when a relatively high foot shock was used. The protective effect of intense training was long-lasting, as evidenced by the high resistance to extinction exhibited throughout the extinction sessions. We discuss the possibility that increased dendritic spinogenesis in dorsomedial striatum may underly this protective effect, and how this mechanism may be related to the resilient memory typical of post-traumatic stress disorder (PTSD).


Subject(s)
Avoidance Learning , Corpus Striatum , Extinction, Psychological , Rats, Wistar , Tetrodotoxin , Animals , Male , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Rats , Avoidance Learning/drug effects , Avoidance Learning/physiology , Corpus Striatum/physiology , Corpus Striatum/drug effects , Tetrodotoxin/pharmacology , Memory Consolidation/drug effects , Memory Consolidation/physiology , Amnesia/physiopathology , Amnesia/prevention & control , Electroshock
4.
Transl Psychiatry ; 14(1): 242, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844463

ABSTRACT

It has been well established that a consolidated memory can be updated during the plastic state induced by reactivation. This updating process opens the possibility to modify maladaptive memory. In the present study, we evaluated whether fear memory could be updated to less-aversive level by incorporating hedonic information during reactivation. Thus, male rats were fear conditioned and, during retrieval, a female was presented as a social rewarding stimulus. We found that memory reactivation with a female (but not a male) reduces fear expression within-session and in the test, without presenting reinstatement or spontaneous recovery. Interestingly, this intervention impaired extinction. Finally, we demonstrated that this emotional remodeling to eliminate fear expression requires the activation of dopamine and oxytocin receptors during retrieval. Hence, these results shed new lights on the memory updating process and suggests that the exposure to natural rewarding information such as a female during retrieval reduces a previously consolidated fear memory.


Subject(s)
Fear , Receptors, Oxytocin , Social Interaction , Animals , Fear/physiology , Male , Rats , Receptors, Oxytocin/metabolism , Female , Memory/physiology , Extinction, Psychological/physiology , Receptors, Dopamine/metabolism , Conditioning, Classical/physiology , Reward , Rats, Wistar , Memory Consolidation/physiology
5.
PeerJ ; 12: e17262, 2024.
Article in English | MEDLINE | ID: mdl-38737738

ABSTRACT

Although exposure-based therapy has been found to be effective at alleviating symptoms of social anxiety disorder, it often does not lead to full remission, and relapse after treatment is common. Exposure therapy is based on theoretical principles of extinction of conditioned fear responses. However, there are inconsistencies in findings across experiments that have investigated the effect of social anxiety on threat conditioning and extinction processes. This systematic review and meta-analysis aimed to examine whether elevated levels of social anxiety are associated with abnormalities in threat conditioning and extinction processes. A second aim was to examine the sensitivity of various study designs and characteristics to detect social anxiety-related differences in threat conditioning and extinction. A systematic search was conducted, which identified twenty-three experiments for inclusion in the review. The findings did not demonstrate compelling evidence that high levels of social anxiety are associated with atypical threat conditioning or extinction. Further, when systematically examining the data, there was no convincing support that the use of a particular psychophysiological measure, subjective rating, or experimental parameter yields more consistent associations between social anxiety and conditioning processes during threat acquisition or extinction. Meta-analyses demonstrated that during threat extinction, the use of anxiety ratings as a dependent variable, socially relevant unconditioned stimuli, and a higher reinforcement schedule produced more detectable effects of social anxiety on compromised extinction processes compared to any other dependent variable (subjective or physiological) or experimental parameter. Overall, the results of this study suggest that social anxiety is not reliably related to deficits in conditioning and extinction processes in the context of laboratory-based Pavlovian conditioning paradigms.


Subject(s)
Extinction, Psychological , Fear , Phobia, Social , Humans , Fear/psychology , Phobia, Social/psychology , Anxiety/psychology , Conditioning, Classical
6.
Sci Rep ; 14(1): 10422, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710727

ABSTRACT

Anticipating positive outcomes is a core cognitive function in the process of reward prediction. However, no neurophysiological method objectively assesses reward prediction in basic medical research. In the present study, we established a physiological paradigm using cortical direct current (DC) potential responses in rats to assess reward prediction. This paradigm consisted of five daily 1-h sessions with two tones, wherein the rewarded tone was followed by electrical stimulation of the medial forebrain bundle (MFB) scheduled at 1000 ms later, whereas the unrewarded tone was not. On day 1, both tones induced a negative DC shift immediately after auditory responses, persisting up to MFB stimulation. This negative shift progressively increased and peaked on day 4. Starting from day 3, the negative shift from 600 to 1000 ms was significantly larger following the rewarded tone than that following the unrewarded tone. This negative DC shift was particularly prominent in the frontal cortex, suggesting its crucial role in discriminative reward prediction. During the extinction sessions, the shift diminished significantly on extinction day 1. These findings suggest that cortical DC potential is related to reward prediction and could be a valuable tool for evaluating animal models of depression, providing a testing system for anhedonia.


Subject(s)
Extinction, Psychological , Reward , Animals , Rats , Male , Extinction, Psychological/physiology , Electric Stimulation , Acoustic Stimulation , Medial Forebrain Bundle/physiology , Rats, Sprague-Dawley
7.
Curr Biol ; 34(10): R510-R512, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38772341

ABSTRACT

The ability to forget fear-inducing situations is essential for adapting to our environment, but the neural mechanisms underlying 'fear forgetting' remain unclear. Novel findings reveal that the activity of the infralimbic cortex - specifically during REM sleep - contributes to the extinction of fear memory.


Subject(s)
Fear , Memory , Sleep, REM , Fear/physiology , Sleep, REM/physiology , Animals , Memory/physiology , Humans , Extinction, Psychological/physiology , Dreams/physiology , Dreams/psychology
8.
Curr Biol ; 34(10): 2247-2255.e5, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38714199

ABSTRACT

Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.


Subject(s)
Extinction, Psychological , Fear , Sleep, REM , Animals , Fear/physiology , Sleep, REM/physiology , Mice , Extinction, Psychological/physiology , Male , Mice, Inbred C57BL , Memory/physiology , Memory Consolidation/physiology , Conditioning, Classical/physiology , Pyramidal Cells/physiology
9.
Behav Res Ther ; 178: 104544, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704975

ABSTRACT

Exposure therapy consists of exposing patients to their fears and thereby diminishing their harm expectancies (i.e., extinction or expectancy learning). Although effective for many anxiety patients, its long-term success depends on the generalization of these harm expectancies to other stimuli. However, research shows that this generalization of extinction is limited. Besides decreasing harm expectancies, fear reduction may also be achieved by changing the meaning of an aversive memory representation (US revaluation). Imagery rescripting (ImRs) may be more successful in generalizing fear reduction because it allegedly works through US revaluation. The current experiment aimed to test working mechanisms for ImRs and extinction (revaluation and expectancy learning, respectively), and to examine generalization of fear reduction. In a fear conditioning paradigm, 113 healthy participants watched an aversive film clip that was used as the US. The manipulation consisted of imagining a script with a positive ending to the film clip (ImRs-only), extinction (extinction-only), or both (ImRs + extinction). Results showed enhanced US revaluation in ImRs + extinction. US expectancy decreased more strongly in the extinction conditions. Generalization of fear reduction was found in all conditions. Our results suggest different working mechanisms for ImRs and exposure. Future research should replicate this in (sub)clinical samples.


Subject(s)
Conditioning, Classical , Extinction, Psychological , Fear , Generalization, Psychological , Imagery, Psychotherapy , Humans , Fear/psychology , Male , Female , Adult , Young Adult , Imagery, Psychotherapy/methods , Adolescent
10.
Behav Res Ther ; 178: 104553, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728832

ABSTRACT

Previous studies showed that glucose has beneficial effects on memory function and can enhance contextual fear learning. To derive potential therapeutic interventions, further research is needed regarding the effects of glucose on fear extinction. In two experimental studies with healthy participants (Study 1: N = 68, 39 females; Study 2: N = 89, 67 females), we investigated the effects of glucose on fear extinction learning and its consolidation. Participants completed a differential fear conditioning paradigm consisting of acquisition, extinction, and return of fear tests: reinstatement, and extinction recall. US-expectancy ratings, skin conductance response (SCR), and fear potentiated startle (FPS) were collected. Participants were pseudorandomized and double-blinded to one of two groups: They received either a drink containing glucose or saccharine 20 min before (Study 1) or immediately after extinction (Study 2). The glucose group showed a significantly stronger decrease in differential FPS during extinction (Study 1) and extinction recall (Study 2). Additionally, the glucose group showed a significantly lower contextual anxiety at test of reinstatement (Study 2). Our findings provide first evidence that glucose supports the process of fear extinction, and in particular the consolidation of fear extinction memory, and thus has potential as a beneficial adjuvant to extinction-based treatments. Registered through the German Clinical Trials Registry (https://www.bfarm.de/EN/BfArM/Tasks/German-Clinical-Trials-Register/_node.html; Study 1: DRKS00010550; Study 2: DRKS00018933).


Subject(s)
Conditioning, Classical , Extinction, Psychological , Fear , Galvanic Skin Response , Glucose , Humans , Extinction, Psychological/drug effects , Fear/drug effects , Fear/psychology , Female , Male , Adult , Young Adult , Double-Blind Method , Conditioning, Classical/drug effects , Galvanic Skin Response/drug effects , Reflex, Startle/drug effects , Reflex, Startle/physiology , Adolescent , Mental Recall/drug effects
11.
Neurobiol Learn Mem ; 212: 107937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735637

ABSTRACT

Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.


Subject(s)
Corpus Striatum , Extinction, Psychological , Fear , Receptors, Dopamine D1 , Animals , Fear/physiology , Fear/drug effects , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Male , Rats , Corpus Striatum/drug effects , Corpus Striatum/physiology , Corpus Striatum/metabolism , Receptors, Dopamine D1/physiology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Dopamine Agonists/pharmacology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Substantia Nigra/drug effects , Substantia Nigra/physiology , Rats, Long-Evans , Dopamine/metabolism , Dopamine/physiology
12.
J Anxiety Disord ; 104: 102870, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733644

ABSTRACT

Exposure therapy is an evidence-based treatment option for anxiety-related disorders. Many patients also take medication that could, in principle, affect exposure therapy efficacy. Clinical and laboratory evidence indeed suggests that benzodiazepines may have detrimental effects. Large clinical trials with propranolol, a common beta-blocker, are currently lacking, but several preclinical studies do indicate impaired establishment of safety memories. Here, we investigated the effects of propranolol given prior to extinction training in 9 rat studies (N = 215) and one human study (N = 72). A Bayesian meta-analysis of our rat studies provided strong evidence against propranolol-induced extinction memory impairment during a drug-free test, and the human study found no significant difference with placebo. Two of the rat studies actually suggested a small beneficial effect of propranolol. Lastly, two rat studies with a benzodiazepine (midazolam) group provided some evidence for a harmful effect on extinction memory, i.e., impaired extinction retention. In conclusion, our midazolam findings are in line with prior literature (i.e., an extinction retention impairment), but this is not the case for the 10 studies with propranolol. Our data thus support caution regarding the use of benzodiazepines during exposure therapy, but argue against a harmful effect of propranolol on extinction learning.


Subject(s)
Adrenergic beta-Antagonists , Extinction, Psychological , Fear , Memory , Midazolam , Propranolol , Propranolol/pharmacology , Propranolol/administration & dosage , Animals , Fear/drug effects , Extinction, Psychological/drug effects , Rats , Humans , Adrenergic beta-Antagonists/pharmacology , Adrenergic beta-Antagonists/administration & dosage , Male , Memory/drug effects , Midazolam/pharmacology , Midazolam/administration & dosage , Midazolam/adverse effects , Adult , Bayes Theorem , Female , Conditioning, Classical/drug effects , Young Adult
13.
Biochem Biophys Res Commun ; 718: 150071, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735136

ABSTRACT

Inducing fear memory extinction by re-presenting a conditioned stimulus (CS) is the foundation of exposure therapy for post-traumatic stress disorder (PTSD). Investigating differences in the ability of different CS presentation patterns to induce extinction learning is crucial for improving this type of therapy. Using a trace fear conditioning paradigm in mice, we demonstrate that spaced presentation of the CS facilitated the extinction of a strong fear memory to a greater extent than continuous CS presentation. These results lay the groundwork for developing more effective exposure therapy techniques for PTSD.


Subject(s)
Conditioning, Classical , Extinction, Psychological , Fear , Memory , Mice, Inbred C57BL , Animals , Fear/physiology , Fear/psychology , Extinction, Psychological/physiology , Memory/physiology , Male , Mice , Conditioning, Classical/physiology , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/physiopathology , Conditioning, Psychological/physiology
14.
Article in English | MEDLINE | ID: mdl-38729234

ABSTRACT

Methamphetamine (METH) is a major health problem without effective pharmacological treatment. Cannabidiol (CBD), a component of the Cannabis sativa plant, is believed to have the potential to inhibit drug-related behavior. However, the neurobiological mechanisms responsible for the effects of CBD remain unclear. Several studies have proposed that the suppressing effects of CBD on drug-seeking behaviors could be through the modulation of the dopamine system. The hippocampus (HIP) D1-like dopamine receptor (D1R) is essential for forming and retrieving drug-associated memory. Therefore, the present study aimed to investigate the role of D1R in the hippocampal CA1 region on the effects of CBD on the extinction and reinstatement of METH-conditioned place preference (CPP). For this purpose, different groups of rats over a 10-day extinction period were administered different doses of intra-CA1 SCH23390 (0.25, 1, or 4 µg/0.5 µl, Saline) as a D1R antagonist before ICV injection of CBD (10 µg/5 µl, DMSO12%). In addition, a different set of animals received intra-CA1 SCH23390 (0.25, 1, or 4 µg/0.5 µl) before CBD injection (50 µg/5 µl) on the reinstatement day. The results revealed that the highest dose of SCH23390 (4 µg) significantly reduced the accelerating effects of CBD on the extinction of METH-CPP (P < 0.01). Furthermore, SCH23390 (1 and 4 µg) in the reinstatement phase notably reversed the preventive effects of CBD on the reinstatement of drug-seeking behavior (P < 0.05 and P < 0.001, respectively). In conclusion, the current study revealed that CBD made a shorter extinction period and suppressed METH reinstatement in part by interacting with D1-like dopamine receptors in the CA1 area of HIP.


Subject(s)
Benzazepines , Cannabidiol , Extinction, Psychological , Methamphetamine , Rats, Wistar , Receptors, Dopamine D1 , Animals , Methamphetamine/pharmacology , Cannabidiol/pharmacology , Extinction, Psychological/drug effects , Male , Receptors, Dopamine D1/antagonists & inhibitors , Benzazepines/pharmacology , Rats , Dose-Response Relationship, Drug , Drug-Seeking Behavior/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Dopamine Antagonists/pharmacology , CA1 Region, Hippocampal/drug effects
15.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38719446

ABSTRACT

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.


Subject(s)
Drug-Seeking Behavior , Extinction, Psychological , Neuronal Plasticity , Prefrontal Cortex , Rats, Sprague-Dawley , Receptor, trkB , Vagus Nerve Stimulation , Animals , Male , Rats , Vagus Nerve Stimulation/methods , Drug-Seeking Behavior/physiology , Drug-Seeking Behavior/drug effects , Receptor, trkB/metabolism , Receptor, trkB/antagonists & inhibitors , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Extinction, Psychological/physiology , Extinction, Psychological/drug effects , Prefrontal Cortex/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Self Administration , Cocaine/pharmacology , Cocaine/administration & dosage
16.
Elife ; 132024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619041

ABSTRACT

Gradually reducing a source of fear during extinction treatments may weaken negative memories in the long term.


Subject(s)
Extinction, Psychological , Fear
17.
J Exp Psychol Anim Learn Cogn ; 50(2): 144-160, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587941

ABSTRACT

Taste aversion learning has sometimes been considered a specialized form of learning. In several other conditioning preparations, after a conditioned stimulus (CS) is conditioned and extinguished, reexposure to the unconditioned stimulus (US) by itself can reinstate the extinguished conditioned response. Reinstatement has been widely studied in fear and appetitive Pavlovian conditioning, as well as operant conditioning, but its status in taste aversion learning is more controversial. Six taste-aversion experiments with rats therefore sought to discover conditions that might encourage it there. The results often yielded little to no evidence of reinstatement, and we also found no evidence of concurrent recovery, a related phenomenon in which responding to a CS that has been conditioned and extinguished is restored if a second CS is separately conditioned. However, a key result was that reinstatement occurred when the conditioning procedure involved multiple closely spaced conditioning trials that could have allowed the animal to learn that a US presentation signaled or set the occasion for another trial with a US. Such a mechanism is precluded in many taste aversion experiments because they often use very few conditioning trials. Overall, the results suggest that taste aversion learning is experimentally unique, though not necessarily biologically or evolutionarily unique. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Extinction, Psychological , Taste , Rats , Animals , Taste/physiology , Extinction, Psychological/physiology , Conditioning, Classical/physiology , Conditioning, Operant , Learning , Avoidance Learning/physiology
18.
Neurobiol Learn Mem ; 211: 107926, 2024 May.
Article in English | MEDLINE | ID: mdl-38579897

ABSTRACT

Learning to stop responding is a fundamental process in instrumental learning. Animals may learn to stop responding under a variety of conditions that include punishment-where the response earns an aversive stimulus in addition to a reinforcer-and extinction-where a reinforced response now earns nothing at all. Recent research suggests that punishment and extinction may be related manifestations of a common retroactive interference process. In both paradigms, animals learn to stop performing a specific response in a specific context, suggesting direct inhibition of the response by the context. This process may depend on the infralimbic cortex (IL), which has been implicated in a variety of interference-based learning paradigms including extinction and habit learning. Despite the behavioral parallels between extinction and punishment, a corresponding role for IL in punishment has not been identified. Here we report that, in a simple arrangement where either punishment or extinction was conducted in a context that differed from the context in which the behavior was first acquired, IL inactivation reduced response suppression in the inhibitory context, but not responding when it "renewed" in the original context. In a more complex arrangement in which two responses were first trained in different contexts and then extinguished or punished in the opposite one, IL inactivation had no effect. The results advance our understanding of the effects of IL in retroactive interference and the behavioral mechanisms that can produce suppression of a response.


Subject(s)
Conditioning, Operant , Extinction, Psychological , Punishment , Extinction, Psychological/physiology , Animals , Conditioning, Operant/physiology , Male , Rats , Rats, Long-Evans , Prefrontal Cortex/physiology , Muscimol/pharmacology
19.
Eur J Pharmacol ; 972: 176559, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38588768

ABSTRACT

This study aimed to assess whether brief recall of methamphetamine (MA) memory, when combined with ketamine (KE) treatment, may prevent stress-primed MA memory reinstatement. Combining 3-min recall and KE facilitated MA memory extinction and resistance to subsequent stress-primed reinstatement. Such combination also produced glutamate metabotropic receptor 5 (mGluR5) upregulation in animals' medial prefrontal cortex (mPFC) γ-amino-butyric acid (GABA) neuron. Accordingly, chemogenetic methods were employed to bi-directionally modulate mPFC GABA activity. Following brief recall and KE-produced MA memory extinction, intra-mPFC mDlx-Gi-coupled-human-muscarinic-receptor 4 (hM4Di)-infused mice receiving compound 21 (C21) treatment showed eminent stress-primed reinstatement, while their GABA mGluR5 expression seemed to be unaltered. Intra-mPFC mDlx-Gq-coupled-human-muscarinic-receptor 3 (hM3Dq)-infused mice undergoing C21 treatment displayed MA memory extinction and resistance to stress-provoked reinstatement. These results suggest that combining a brief recall and KE treatment and exciting mPFC GABA neuron may facilitate MA memory extinction and resistance to stress-primed recall. mPFC GABA neuronal activity plays a role in mediating brief recall/KE-produced effects on curbing the stress-provoked MA seeking.


Subject(s)
Extinction, Psychological , Ketamine , Mental Recall , Methamphetamine , Prefrontal Cortex , Receptor, Metabotropic Glutamate 5 , Stress, Psychological , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Methamphetamine/pharmacology , Ketamine/pharmacology , Male , Mice , Mental Recall/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/psychology , Receptor, Metabotropic Glutamate 5/metabolism , Extinction, Psychological/drug effects , Memory/drug effects , gamma-Aminobutyric Acid/metabolism , Mice, Inbred C57BL
20.
Learn Mem ; 31(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38627067

ABSTRACT

Exposure-based therapy is effective in treating anxiety, but a return of fear in the form of relapse is common. Exposure is based on the extinction of Pavlovian fear conditioning. Both animal and human studies point to increased arousal during immediate compared to delayed extinction (>+24 h), which presumably impairs extinction learning and increases the subsequent return of fear. Impaired extinction learning under arousal might interfere with psychotherapeutic interventions. The aim of the present study was to investigate whether arousal before extinction differs between extinction groups and whether arousal before extinction predicts the return of fear in a later (retention) test. As a highlight, both the time between fear acquisition and extinction (immediate vs. delayed) and the time between extinction and test (early vs. late test) were systematically varied. We performed follow-up analyses on data from 103 young, healthy participants to test the above hypotheses. Subjective arousal ratings and physiological arousal measures of sympathetic and hypothalamic pituitary adrenal axis activation (tonic skin conductance and salivary cortisol) were collected. Increased pre-extinction arousal in the immediate extinction group was only confirmed for subjective arousal. In linear regression analyses, none of the arousal measures predicted a significant return of fear in the different experimental groups. Only when we aggregated across the two test groups, tonic skin conductance at the onset of extinction predicted the return of fear in skin conductance responses. The overall results provide little evidence that pre-extinction arousal affects subsequent extinction learning and memory. In terms of clinical relevance, there is no clear evidence that exposure could be improved by reducing subjective or physiological arousal.


Subject(s)
Galvanic Skin Response , Hypothalamo-Hypophyseal System , Animals , Humans , Extinction, Psychological/physiology , Pituitary-Adrenal System , Fear/physiology , Arousal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...