Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.027
Filter
1.
An Acad Bras Cienc ; 96(2): e20220830, 2024.
Article in English | MEDLINE | ID: mdl-38747783

ABSTRACT

Frugivore bats are important seed dispersers in forests and their abundance are associated with the presence of zoochoric plants. In this context, the aim of our study was to investigate the association of the frugivore bat S. lilium with the diaspores of the zoochoric plant S. mauritianum, a common arboreal species present in forest fragments of southern Brazil. We also investigated the diet of the species based on seed content present in feces of individuals. Bats were mist-netted from November 2017 to April 2018 in a fragment of Atlantic Forest. The proportion of immature and mature diaspores of S. mauritianum was estimated in the same area where bats were sampled, and feces were sampled from captured individuals. In total, 61 individuals of S. lilium were captured, and 795 seeds were sampled from their feces. The abundance of S. lilium was significantly associated with the proportion of immature diaspores of S. mauritianum. We identified seeds of two botanical families: Solanaceae (89%) and Moraceae (11%) in the fecal samples. Our findings support the view that S. lilium is a legitimate disperser of S. mauritianum, and that its ecological function is probably a result of co-adaptation.


Subject(s)
Chiroptera , Feces , Forests , Animals , Brazil , Chiroptera/classification , Feces/chemistry , Solanum/classification , Seed Dispersal , Population Density , Seeds
2.
Sci Rep ; 14(1): 11088, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750079

ABSTRACT

Many studies seeking to understand the success of biological invasions focus on species' escape from negative interactions, such as damage from herbivores, pathogens, or predators in their introduced range (enemy release). However, much less work has been done to assess the possibility that introduced species might shed mutualists such as pollinators, seed dispersers, and mycorrhizae when they are transported to a new range. We ran a cross-continental field study and found that plants were being visited by 2.6 times more potential pollinators with 1.8 times greater richness in their native range than in their introduced range. Understanding both the positive and negative consequences of introduction to a new range can help us predict, monitor, and manage future invasion events.


Subject(s)
Introduced Species , Animals , Pollination , Mycorrhizae/physiology , Symbiosis , Plants , Seed Dispersal , Ecosystem
3.
Bioinspir Biomim ; 19(4)2024 May 21.
Article in English | MEDLINE | ID: mdl-38701824

ABSTRACT

The resilience of pine cone scales has been investigated in the context of current architectural efforts to develop bioinspired passive façade shading systems that can help regulate the indoor climate. As previously shown for other species, separated tissues ofPinus jeffreyipine cone scales show independent hygroscopic bending. The blocking force that pine cone scales can generate during a closing movement is shown to be affected by the length, width and mass of the scales. After cyclically actuating pine cone scales by submerging and drying them for 102 cycles and comparing their functional characteristics measured in the undamaged and damaged state, they were still able to achieve 97% of their undamaged blocking force and torque and over 94% of their undamaged opening angle. Despite evidence of cracking within the sclereid cell layer and extensive delamination of sclerenchyma fibres, no loss of function was observed in any tested pine cone scale. This functional resilience and robustness may allowP. jeffreyitrees to continue seed dispersal for longer periods of time and to reliably protect seeds that have not yet been released. These results have contributed to a better understanding of the pine cone scale and may provide inspiration for further improving the long-term performance of passive, hygro-sensitive façade shading systems.


Subject(s)
Pinus , Pinus/physiology , Biomimetics/methods , Seed Dispersal/physiology
4.
Curr Opin Plant Biol ; 79: 102543, 2024 06.
Article in English | MEDLINE | ID: mdl-38688200

ABSTRACT

Adaptations for seed dispersal are found everywhere in nature. However, only a fraction of this diversity is accessible through the study of model organisms. For example, Arabidopsis seeds are released by dehiscent fruit; and although many genes required for dehiscence have been identified, the genetic basis for the vast majority of seed dispersal strategies remains understudied. Explosive fruit generate mechanical forces to launch seeds over a wide area. Recent work indicates that key innovations required for explosive dispersal lie in localised lignin deposition and precise patterns of microtubule-dependent growth in the fruit valves, rather than dehiscence zone structure. These insights come from comparative approaches, which extend the reach of developmental genetics by developing experimental tools in less well-studied species, such as the Arabidopsis relative, Cardamine hirsuta.


Subject(s)
Fruit , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Fruit/physiology , Seed Dispersal , Seeds/growth & development , Seeds/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/growth & development , Arabidopsis/metabolism , Cardamine/genetics , Cardamine/metabolism , Cardamine/physiology
5.
Mol Ecol ; 33(11): e17354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656619

ABSTRACT

Effective dispersal among plant populations is dependent on vector behaviour, landscape features and availability of adequate habitats. To capture landscape feature effects on dispersal, studies must be conducted at scales reflecting single-generation dispersal events (mesoscale). Many studies are conducted at large scales where genetic differentiation is due to dispersal occurring over multiple generations, making it difficult to interpret the effects of specific landscape features on vector behaviour. Genetic structure at the mesoscale may be determined by ecological and evolutionary processes, such as the consequences of vector behaviour on patterns of gene flow. We used chloroplast haplotypes and nuclear genome SNP surveys to identify landscape features influencing seed and pollen dispersal at a mesoscale within the Rogue River Valley in southern Oregon. We evaluated biotic and abiotic vector behaviour by contrasting two annual species with differing dispersal mechanisms; Achyrachaena mollis (Asteraceae) is a self-pollinating and anemochoric species, and Plectritis congesta (Caprifoliaceae) is biotically pollinated with barochoric seeds. Using landscape genetics methods, we identified features of the study region that conduct or restrict dispersal. We found chloroplast haplotypes were indicative of historic patterns of gene flow prior to human modification of landscapes. Seed dispersal of A. mollis was best supported by models of isolation by distance, while seed-driven gene flow of P. congesta was determined by the distribution of preserved natural spaces and quality habitat. Nuclear genetic structure was driven by both pollen and seed dispersal, and both species responded to contemporary landscape changes, such as urban and agricultural conversion, and habitat availability.


Subject(s)
Gene Flow , Haplotypes , Seed Dispersal , Haplotypes/genetics , Oregon , Polymorphism, Single Nucleotide/genetics , Ecosystem , Genetics, Population , Grassland , Asteraceae/genetics , Plant Dispersal , DNA, Chloroplast/genetics , Pollen/genetics , Pollination/genetics , Humans
6.
J R Soc Interface ; 21(212): 20230486, 2024 03.
Article in English | MEDLINE | ID: mdl-38471534

ABSTRACT

Ruellia ciliatiflora is a perennial herb whose fruits explosively dehisce, launching their thin disc-like seeds over 6 m with a backspin up to 1660 Hz. While it has been previously shown that the backspin launch orientation minimizes the aerodynamic drag experienced by the seeds, it is not immediately obvious whether backspin is also the range-maximizing launch orientation. Here the three-dimensional equation of motion of a thin, spinning disc flying through a fluid medium was derived and solved numerically to simulate the flight of seeds of R. ciliatiflora under different launch conditions. Simulations of seed flights reveal that the range-maximizing launch orientation lies between sidespin and topspin, far from the backspin that is observed in nature. While this range-maximizing orientation results in dispersal ranges of nearly 10 m, the precise orientation is highly sensitive to other launch parameters, chiefly spin rate and launch angle. By contrast, backspin, which yields moderate dispersal ranges about 60% of the range-maximizing orientation, is robust to perturbations in launch parameters that the plant cannot precisely control.


Subject(s)
Acanthaceae , Seed Dispersal , Seeds , Fruit , Motion
7.
Curr Biol ; 34(7): 1541-1548.e3, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38452760

ABSTRACT

Afrotropical forests are undergoing massive change caused by defaunation, i.e., the human-induced decline of animal species,1 most of which are frugivorous species.1,2,3 Frugivores' depletion and their functional disappearance are expected to cascade on tree dispersal and forest structure via interaction networks,4,5,6,7 as the majority of tree species depend on frugivores for their dispersal.8 However, frugivory networks remain largely unknown, especially in Afrotropical areas,9,10,11 which considerably limits our ability to predict changes in forest dynamics and structures using network analysis.12,13,14,15 While the academic workforce may be inadequate to fill this knowledge gap before it is too late, local ecological knowledge appears as a valuable source of ecological information and could significantly contribute to our understanding of such crucial interactions for tropical forests.16,17,18,19,20,21 To investigate potential synergies between local ecological knowledge and academic knowledge,20,21 we compiled frugivory interactions linking 286 trees to 100 frugivore species from the academic literature and local ecological knowledge coming from interviews of Gabonese forest-dependent people. Here, we showed that local ecological knowledge on frugivory interactions was substantial and original, with 39% of these interactions unknown by science. We demonstrated that combining academic and local ecological knowledge affects the functional relationship linking frugivore body mass to seed size, as well as the network structure. Our results highlight the benefits of bridging knowledge systems between academics and local communities for a better understanding of the functioning and response to perturbations of Afrotropical forests.


Subject(s)
Fruit , Seed Dispersal , Humans , Animals , Fruit/physiology , Forests , Trees , Seeds , Ecosystem
8.
Sci Rep ; 14(1): 5436, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443407

ABSTRACT

The Seed Dispersal Syndrome Hypothesis (SDSH) posits that fruit traits predict the main dispersers interacting with plant species. Mammalian dispersers, relying heavily on olfactory cues, are expected to select dull-colored, scented, and larger fruits compared to birds. However, challenges like overabundant seed predators and context-dependency of frugivore-plant interactions complicate SDSH expectations. We studied the Iberian pear, Pyrus bourgaeana, an expected mammal-dispersed tree based on its fruit traits. Extensive camera-trapping data (over 35,000 records) from several tree populations and years revealed visits from seven frugivore groups, with ungulate fruit predators (59-97%) and carnivore seed dispersers (1-20%) most frequent, while birds, lagomorphs, and rodents were infrequent (0-10%). Red deer and wild boar were also the main fruit removers in all sites and years but acted as fruit and seed predators, and thus likely exert conflicting selection pressures to those exerted by seed dispersers. Although, as predicted by the SDSH, most Iberian pear fruits were consumed by large and medium-sized mammals, the traits of Iberian pear fruits likely reflect selection pressures from dispersal vectors in past times. Our results do not challenge the SDHS but do reveal the importance of considering frugivore functional roles for its adequate evaluation.


Subject(s)
Deer , Lagomorpha , Pyrus , Seed Dispersal , Animals , Fruit , Seeds
10.
PLoS One ; 19(3): e0293377, 2024.
Article in English | MEDLINE | ID: mdl-38451997

ABSTRACT

Myrmecochory-seed dispersal by ants-is a mutualistic interaction in which ants attracted by seed appendices take them away from the parental plant location, where seeds usually have better development odds. Not all ant species benefit plants, and the mechanisms of those divergent outcomes are still unclear, especially from the perspective of microbial third parties. Here, we explore the effects of seed manipulation on fungi communities promoted by two ant species with contrasting effects on seed germination and antimicrobial cleaning strategies. We hypothesize that: i) fungi richness is higher in seeds manipulated by Acromyrmex subterraneus (species that negatively affect seed germination), followed by unmanipulated seeds and seeds manipulated by Atta sexdens (ant species that increase seed germination) and ii) seeds manipulated by A. sexdens, Ac. subterraneus and unmanipulated seeds present dissimilar fungi compositions. We identified fungal morphotypes in three groups of seeds: i) manipulated by A. sexdens; ii) manipulated by Ac. subterraneus; iii) unmanipulated. Seeds manipulated by Ac. subterraneus exhibited higher fungal richness than those manipulated by A. sexdens and unmanipulated seeds, indicating that the ant species known to impair germination increases the fungal load on seeds. Additionally, we found that A. sexdens ants were unable to reduce fungal richness compared to unmanipulated seeds. Furthermore, fungal composition differed among all three treatments. Our results underscore the significance of ant species identity in shaping the fungal communities associated with myrmecochorous seeds. Given the potential influence of microbial infection on seed fate, we suggest considering manipulation strategies when evaluating the overall quality of an ant as a seed disperser.


Subject(s)
Ants , Seed Dispersal , Animals , Seeds , Plants , Germination , Fungi
11.
Oecologia ; 204(3): 505-515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265600

ABSTRACT

Megafauna are important seed dispersers because they can disperse large quantities of seeds over long distances. In Hokkaido, Japan, the largest terrestrial animal is the brown bear (Ursus arctos) and other megafauna seed dispersers are lacking. Thus, brown bears are expected to have an important function as seed dispersers in Hokkaido. In this study, we, for the first time, evaluated the seed dispersal function of brown bears in Hokkaido using three fleshy-fruited trees and studied: (1) gut passage time (GPT) in feeding experiments, (2) seed dispersal distance using tracking data of wild bears, and (3) the effect of gut passage and pulp removal on germination rate. Most seeds were defecated intact, and less than 6% were broken. The average GPT without pulp was 3 h and 56 min to 6 h and 13 min, depending on the plant and trial. Each plant's average simulated seed dispersal distance was 202-512 m. The dispersal distance of Actinidia arguta seeds with pulp was significantly longer than those without pulp because of their longer GPT. The germination rate of defecated seeds without pulp was 19-51%, depending on the plant, and was significantly higher or not different comparing with that of seeds with pulp. We concluded that brown bears in Hokkaido are effective seed dispersers. In managing brown bears in Hokkaido, such ecological functions should be considered along with conserving the bear population and reducing human-bear conflicts.


Subject(s)
Seed Dispersal , Ursidae , Animals , Humans , Japan , Seeds , Fruit , Plants , Germination , Feeding Behavior
12.
Ecol Lett ; 27(1): e14347, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38073068

ABSTRACT

Seed production and dispersal are crucial ecological processes impacting plant demography, species distributions and community assembly. Plant-animal interactions commonly mediate both seed production and seed dispersal, but current research often examines pollination and seed dispersal separately, which hinders our understanding of how pollination services affect downstream dispersal services. To fill this gap, we propose a conceptual framework exploring how pollen limitation can impact the effectiveness of seed dispersal for endozoochorous and myrmecochorous plant species. We summarize the quantitative and qualitative effects of pollen limitation on plant reproduction and use Optimal Foraging Theory to predict its impact on the foraging behaviour of seed dispersers. In doing so, we offer a new framework that poses numerous hypotheses and empirical tests to investigate links between pollen limitation and seed dispersal effectiveness and, consequently, post-dispersal ecological processes occurring at different levels of biological organization. Finally, considering the importance of pollination and seed dispersal outcomes to plant eco-evolutionary dynamics, we discussed the implications of our framework for future studies exploring the demographic and evolutionary impacts of pollen limitation for animal-dispersed plants.


Subject(s)
Seed Dispersal , Animals , Seeds , Plants , Pollen , Pollination
13.
Biol Rev Camb Philos Soc ; 99(2): 430-457, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38081480

ABSTRACT

Vertebrate-mediated seed dispersal is a common attribute of many living plants, and variation in the size and abundance of fleshy diaspores is influenced by regional climate and by the nature of vertebrate seed dispersers among present-day floras. However, potential drivers of large-scale variation in the abundance and size distributions of fleshy diaspores through geological time, and the importance of geographic variation, are incompletely known. This knowledge gap is important because fleshy diaspores are a key mechanism of energy transfer from photosynthesis to animals and may in part explain the diversification of major groups within birds and mammals. Various hypotheses have been proposed to explain variation in the abundance and size distribution of fleshy diaspores through time, including plant-frugivore co-evolution, angiosperm diversification, and changes in vegetational structure and climate. We present a new data set of more than 800 georeferenced fossil diaspore occurrences spanning the Triassic-Oligocene, across low to mid- to high palaeolatitudes. We use this to quantify patterns of long-term change in fleshy diaspores, examining the timing and geographical context of important shifts as a test of the potential evolutionary and climatic explanations. We find that the fleshy fruit sizes of angiosperms increased for much of the Cretaceous, during the early diversification of angiosperms from herbaceous ancestors with small fruits. Nevertheless, this did not cause a substantial net change in the fleshy diaspore size distributions across seed plants, because gymnosperms had achieved a similar size distribution by at least the Late Triassic. Furthermore, gymnosperm-dominated Mesozoic ecosystems were mostly open, and harboured low proportions of specialised frugivores until the latest Cretaceous, suggesting that changes in vegetation structure and plant-frugivore co-evolution were probably not important drivers of fleshy diaspore size distributions over long timescales. Instead, fleshy diaspore size distributions may be largely constrained by physical or life-history limits that are shared among groups and diversify as a plant group expands into different growth forms/sizes, habitats, and climate regimes. Mesozoic gymnosperm floras had a low abundance of fleshy diaspores (<50% fleshy diaspore taxa), that was surpassed by some low-latitude angiosperm floras in the Cretaceous. Eocene angiosperm floras show a mid- to high latitude peak in fleshy fruit abundance, with very high proportions of fleshy fruits that even exceed those seen at low latitudes both in the Eocene and today. Mid- to high latitude proportions of fleshy fruits declined substantially over the Eocene-Oligocene transition, resulting in a shift to more modern-like geographic distributions with the highest proportion of fleshy fruits occurring in low-latitude tropical assemblages. This shift was coincident with global cooling and the onset of Southern Hemisphere glaciation, suggesting that rapid cooling at mid- and high latitudes caused a decrease in availability of the climate conditions most favourable for fleshy fruits in angiosperms. Future research could be focused on examining the environmental niches of modern fleshy fruits, and the potential effects of climate change on fleshy fruit and frugivore diversity.


Subject(s)
Magnoliopsida , Seed Dispersal , Animals , Ecosystem , Seeds , Fruit , Fossils , Mammals
14.
Ecology ; 105(1): e4201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37901946

ABSTRACT

Climate change may significantly alter how organisms disperse, with implications for population spread and species management. Wind-dispersed plants have emerged as a useful study system for investigating how climate change affects dispersal, although studies modeling wind dispersal often assume propagules are released from a single point on an individual. This simplifying assumption, while useful, may misestimate dispersal. Here, we investigate the effects of climate change on dispersal distances and spread rates, examining how these quantities shift when accounting for all points of seed release on an individual. Using the wind-dispersed invasive thistles Carduus nutans and Carduus acanthoides, we quantify temperature-driven shifts in the distribution of flower head heights using a passive warming field experiment, and estimate how these shifts affect dispersal using the Wald analytical long-distance (WALD) model; for C. nutans, we use existing demographic data to simulate how these shifts affect population spread rates. We also compare dispersal distances for both warmed and ambient temperature plants, considering the entire distribution of flower head heights versus the common assumption of point-source seed release at the maximum height. For experimentally grown individuals, an ~0.6°C higher growing temperature increased mean and maximum flower head height by 14.1 cm (15.0%) and 14.0 cm (13.2%), respectively, in C. nutans and by 21.2 cm (26.6%) and 31.8 cm (36.7%), respectively, in C. acanthoides. Seeds from warmed individuals were more likely to exceed a given dispersal distance than those from their unwarmed counterparts; warmed C. nutans and C. acanthoides seeds were on average 1.36 and 1.71 times as likely, respectively, to travel 10 m or more in dispersal simulations, with this disparity increasing at longer dispersal distances. For C. nutans, increased growing temperatures boosted simulated rates of population spread by 42.2%, while assuming dispersal from a maximum height point source rather than the true distribution of flower head heights increased simulated spread by up to 28.5%. Our results not only demonstrate faster population spread under increased temperatures, but also have substantial implications for modeling such spread, as the common simplifying assumption of dispersal from a single maximum height source may substantially overestimate spread rates.


Subject(s)
Carduus , Seed Dispersal , Humans , Introduced Species , Temperature , Inflorescence , Seeds
15.
Ecology ; 105(2): e4216, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037487

ABSTRACT

Seed dispersal by frugivorous birds facilitates plant invasions, but it is poorly known how invasive plants integrate into native communities in fragmented landscapes. We surveyed plant-frugivore interactions, including an invasive plant (Phytolacca americana), on 22 artificial land-bridge islands (fragmented forests) in the Thousand Island Lake, China. Focusing on frugivory interactions that may lead to seed dispersal, we built ecological networks of studied islands both at the local island (community) and at landscape (metacommunity) levels. On islands with P. americana, we found that P. americana impacted local avian frugivory networks more on islands with species-poor plant communities and on isolated islands. Moreover, as P. americana interacted mainly with local core birds (generalists), this indicates reduced seed dispersal of native plants on invaded islands. At the landscape level, P. americana had established strong interactions with generalist birds that largely maintain seed-dispersal functions across islands, as revealed by their topologically central roles both in the regional plant-bird trophic network and in the spatial metanetwork. This indicates that generalist frugivorous birds may have facilitated the dispersal of P. americana across islands, making P. americana well integrated into the plant-frugivore mutualistic metacommunity. Taken together, our study demonstrates that the impact of plant invasion is context-dependent and that generalist native frugivores with high dispersal potential may accelerate plant invasion in fragmented landscapes. These findings highlight the importance of taking the functional roles of animal mutualists and habitat fragmentation into account when managing plant invasions and their impact on native communities.


Subject(s)
Fruit , Seed Dispersal , Animals , Ecosystem , Forests , Plants , Birds , Feeding Behavior , Islands
16.
Ecology ; 105(2): e4223, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38038399

ABSTRACT

Ants and other insects are often a source of localized secondary dispersal for wind-dispersed plants and thus play an important ecological role in their spatial dynamics, but there is limited information on how climate change will affect such dispersal processes. Here, we use field experiments to investigate how climate warming affects seed removal, as this initiation of movement represents the first step in insect-driven secondary dispersal. Our results indicate that for the invasive thistles Carduus nutans and Carduus acanthoides, increased growing temperature influences seed attractiveness to insect dispersers, with seeds from maternal plants grown at temperatures 0.6°C above ambient removed by insect dispersers at higher rates than their unwarmed counterparts. We also observe that seed elaiosomes in these two species play an important role in dispersal, as seeds without elaiosomes were significantly less likely to be removed over the same period. Significant interactions between elaiosome presence/absence and warming treatment were also observed, though only for C. acanthoides, with the boost in seed removal from warming dampened when the elaiosome was present compared to when it was absent. These findings provide evidence that climate warming may alter aspects of dispersal such as seed removal by secondary dispersers, with potential ramifications for dispersal in future climates since seed-bearing plants around the world may be subject to increased growing temperatures, and many of these plant species bear elaiosomes and experience seed dispersal by insects.


Subject(s)
Ants , Seed Dispersal , Animals , Introduced Species , Seeds , Plants , Temperature
17.
New Phytol ; 241(4): 1840-1850, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044708

ABSTRACT

Conditional mutualisms involve costs and benefits that vary with environmental factors, but mechanisms driving these dynamics remain poorly understood. Scatterhoarder-plant interactions are a prime example of this phenomenon, as scatterhoarders can either increase or reduce plant recruitment depending on the balance between seed dispersal and predation. We explored factors that drive the magnitude of net benefits for plants in this interaction using a mathematical model, with parameter values based on European beech (Fagus sylvatica) and yellow-necked mice (Apodemus flavicollis). We measured benefits as the percentage of germinating seeds, and examined how varying rodent survival (reflecting, e.g. changes in predation pressure), the rate of seed loss to other granivores, the abundance of alternative food resources, and changes in masting patterns affect the quality of mutualism. We found that increasing granivore abundance can degrade the quality of plant-scatterhoarder mutualism due to increased cache pilferage. Scatterhoarders are predicted to respond by increasing immediate consumption of gathered seeds, leading to higher costs and reduced benefits for plants. Thus, biotic changes that are detrimental to rodent populations can be beneficial for tree recruitment due to adaptive behavior of rodents. When scatterhoarder populations decline too drastically (< 5 individuals ha-1 ); however, tree recruitment may also suffer.


Subject(s)
Fagus , Seed Dispersal , Mice , Animals , Feeding Behavior , Symbiosis , Seeds , Rodentia , Trees
18.
New Phytol ; 241(1): 461-470, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37858964

ABSTRACT

Seed dispersal mechanisms play a crucial role in driving evolutionary changes in seed and fruit traits. While previous studies have primarily focussed on the mean or maximum values of these traits, there is also significant intraspecific variation in them. Therefore, it is pertinent to investigate whether dispersal mechanisms can explain intraspecific variations in these traits. Taking seed size as a case study, we compiled a global dataset comprising 3424 records of intraspecific variation in seed size (IVSS), belonging to 691 plant species and 131 families. We provided the first comprehensive quantification of dispersal mechanism effects on IVSS. Biotic-dispersed species exhibited a larger IVSS than abiotic-dispersed species. Synzoochory species had a larger IVSS than endozoochory, epizoochory, and myrmecochory species. Vertebrate-dispersed species exhibited a larger IVSS than invertebrate-dispersed species, and species dispersed by birds exhibited a larger IVSS than mammal-dispersed species. Additionally, a clear negative correlation was detected between IVSS and disperser body mass. Our results prove that the IVSS is associated with the seed dispersal mechanism. This study advances our understanding of the dispersal mechanisms' crucial role in seed size evolution, encompassing not only the mean value but also the variation.


Subject(s)
Seed Dispersal , Humans , Animals , Seeds , Fruit , Birds , Plants , Mammals
19.
Braz. j. biol ; 84: e259137, 2024. graf
Article in English | LILACS, VETINDEX | ID: biblio-1364510

ABSTRACT

The edge effect has impacts on seed and seedling survival due to modifications in biotic and abiotic factors. Often, large-seeded tree species lost seed vectors in the forest edge due to the rarity or absence of large frugivores at this habitat type. In this study, I compared the seedling abundance and distribution of the palm Syagrus flexuosa between edges and interiors of three large Cerrado remnants. In every remnant, the number of seedlings around parent palms in the edge was smaller than around palm individuals located in the Cerrado interior. Moreover, the distribution of seedlings around parent palms differed between edges and interiors. In the edges, most seedlings were found under parent crowns, while in the interiors, the contrary occurred. The high concentration of seedlings under parent palms suggests a decrease of seed dispersal at the edges. Because S. flexuosa is a widely distributed palm that serves as an important resource for several animals along Cerrado habitats, changes on the regeneration process of this palm due to edge effects can further impact frugivore populations. Therefore, the decline of seedling establishment along forest edges implies changes in the Cerrado regeneration dynamics, which may compromise the persistence of ecological processes and animal communities.


O efeito de borda tem impactos severos na sobrevivência de sementes e plântulas devido a modificações dos fatores bióticos e abióticos. Frequentemente, espécies arbóreas com sementes grandes perdem seus dispersores na borda da floresta devido à raridade ou ausência de grandes frugívoros neste tipo de habitat. Neste estudo, comparei a abundância e distribuição de plântulas de S. flexuosa entre bordas e interiores de três grandes remanescentes de Cerrado. Em cada remanescente, o número de plântulas ao redor das palmeiras-mãe, na borda, era menor do que ao redor dos indivíduos no interior do Cerrado. Nas bordas, a maioria das plântulas foi encontrada junto às plantas mãe, enquanto no interior ocorreu o contrário. A alta concentração de plântulas sob as plantas adultas sugere diminuição da dispersão de sementes nas bordas. Como S. flexuosa é uma palmeira amplamente distribuída que serve como um recurso importante para vários animais nos habitats do Cerrado, mudanças no processo de regeneração dessa palmeira devido aos efeitos de borda podem impactar ainda mais as populações de frugívoros. Portanto, o declínio do estabelecimento de plântulas ao longo das bordas do Cerrado implica em mudanças na dinâmica de regeneração do Cerrado, o que pode comprometer a persistência de processos ecológicos e comunidades animais.


Subject(s)
Ecosystem , Arecaceae , Seedlings , Seed Dispersal
20.
Rev. biol. trop ; 71(1)dic. 2023.
Article in English | LILACS, SaludCR | ID: biblio-1514967

ABSTRACT

Introduction: The type of land use surrounding the remnants of tropical forest may generate changes in the characteristics of plant populations and communities. Consequently, there may be a significant reduction in processes of pollination and diasporas dispersion. Therefore, causing changes in some parameters of seed rain. Objective: To characterize and compare seed density, species richness, floristic composition, habit, dispersal syndrome, and successional category of seed rain between urban and rural fragments of Atlantic Forest, in the 2015 and 2016 weather seasons. Methods: The study areas were defined after mapping and quantification of urban and rural occupations around the remnants, based on satellite images. In each fragment, were installed 36 collectors of 0.25 m2. The material was collected monthly during two consecutive years. Results: Seed rain richness was higher in the urban fragment during the rainy season in the two years, whereas it was similar between the fragments in the dry season. The seed density in the rural fragment was higher than in the urban during the rainy season; did not vary in urban between years or between seasons; and it was higher in the rural fragment in the rainy season of one year. There was a difference in the floristic composition of the seed rain between the fragments along time. The variations in the functional attributes of habit, dispersal syndrome, and successional category, were explained by the variables fragment, season, and year. Conclusions: Differences in the characteristics of the seed rain between the fragments might reflect the spatial and temporal heterogeneity, due to the diverse uses of the soil and external pressures (anthropogenic actions) present in the surroundings of the forest fragments and temporal variation in precipitation.


Introducción: El tipo de uso del suelo que rodea los remanentes de bosque tropical puede generar cambios en las características de las poblaciones y comunidades vegetales. En consecuencia, puede haber una reducción significativa en los procesos de polinización y dispersión de las diásporas. Por lo tanto, provocando cambios en algunos parámetros de la lluvia de semillas. Objetivo: Caracterizar y comparar la densidad de semillas, la riqueza de especies, la composición florística, el hábito, el síndrome de dispersión y la categoría sucesional de la lluvia de semillas entre fragmentos urbanos y rurales de Mata Atlántica, en las estaciones climáticas del 2015 y 2016. Métodos: Las áreas de estudio se definieron luego del mapeo y cuantificación de las ocupaciones urbanas y rurales alrededor de los remanentes, con base en imágenes satelitales. En cada fragmento se instalaron 36 colectores de 0.25 m2. El material fue recolectado mensualmente durante dos años consecutivos. Resultados: La riqueza de lluvia de semillas fue mayor en el fragmento urbano durante la estación lluviosa en los dos años, mientras que fue similar entre los fragmentos en la estación seca. La densidad de semillas en el fragmento rural fue mayor que en el urbano durante la estación lluviosa; no varió en urbano entre años o entre estaciones; y fue mayor en el fragmento rural en la estación lluviosa del primer año. Hubo una diferencia en la composición florística de la lluvia de semillas entre los fragmentos a lo largo del tiempo. Las variaciones en los atributos funcionales de hábito, síndrome de dispersión y categoría sucesional, fueron explicadas por las variables fragmento, estación y año. Conclusiones: Las diferencias en las características de la lluvia de semillas entre los fragmentos podrían reflejar la heterogeneidad espacial y temporal, debido a los diversos usos del suelo y presiones externas (acciones antropogénicas) presentes en el entorno de los fragmentos de bosque y variación temporal de la precipitación.


Subject(s)
Seasons , Seed Dispersal/physiology , Rainforest , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL
...