Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181.315
Filter
1.
Carbohydr Polym ; 339: 122214, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823900

ABSTRACT

The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-ß-D-Glcp-(1→, →3)-ß-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-ß-D-Glcp-(1→ by ß-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.


Subject(s)
Basidiomycota , Cell Differentiation , Glucans , Animals , Mice , Basidiomycota/chemistry , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Cell Differentiation/drug effects , T-Lymphocytes/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Male , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Cyclophosphamide/pharmacology , Mice, Inbred BALB C , Gastrointestinal Microbiome/drug effects
3.
Front Immunol ; 15: 1377913, 2024.
Article in English | MEDLINE | ID: mdl-38799420

ABSTRACT

Introduction: The atypical chemokine receptor 2 (ACKR2) is a chemokine scavenger receptor, which limits inflammation and organ damage in several experimental disease models including kidney diseases. However, potential roles of ACKR2 in reducing inflammation and tissue injury in autoimmune disorders like systemic lupus erythematosus (SLE) and lupus nephritis are unknown, as well as its effects on systemic autoimmunity. Methods: To characterize functional roles of ACKR2 in SLE, genetic Ackr2 deficiency was introduced into lupus-prone C57BL/6lpr (Ackr2-/- B6lpr) mice. Results: Upon inflammatory stimulation in vitro, secreted chemokine levels increased in Ackr2 deficient tubulointerstitial tissue but not glomeruli. Moreover, Ackr2 expression was induced in kidneys and lungs of female C57BL/6lpr mice developing SLE. However, female Ackr2-/- B6lpr mice at 28 weeks of age showed similar renal functional parameters as wildtype (WT)-B6lpr mice. Consistently, assessment of activity and chronicity indices for lupus nephritis revealed comparable renal injury. Interestingly, Ackr2-/- B6lpr mice showed significantly increased renal infiltrates of CD3+ T and B cells, but not neutrophils, macrophages or dendritic cells, with T cells predominantly accumulating in the tubulointerstitial compartment of Ackr2-/- B6lpr mice. In addition, histology demonstrated significantly increased peribronchial lung infiltrates of CD3+ T cells in Ackr2-/- B6lpr mice. Despite this, protein levels of pro-inflammatory chemokines and mRNA expression of inflammatory mediators were not different in kidneys and lungs of WT- and Ackr2-/- B6lpr mice. This data suggests compensatory mechanisms for sufficient chemokine clearance in Ackr2-deficient B6lpr mice in vivo. Analysis of systemic autoimmune responses revealed comparable levels of circulating lupus-associated autoantibodies and glomerular immunoglobulin deposition in the two genotypes. Interestingly, similar to kidney and lung CD4+ T cell numbers and activation were significantly increased in spleens of Ackr2-deficient B6lpr mice. In lymph nodes of Ackr2-/- B6lpr mice abundance of activated dendritic cells decreased, but CD4+ T cell numbers were comparable to WT. Moreover, increased plasma levels of CCL2 were present in Ackr2-/- B6lpr mice, which may facilitate T cell mobilization into spleens and peripheral organs. Discussion: In summary, we show that ACKR2 prevents expansion of T cells and formation of tertiary lymphoid tissue, but is not essential to limit autoimmune tissue injury in lupus-prone B6lpr mice.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes , Tertiary Lymphoid Structures , Animals , Mice , Female , Lupus Erythematosus, Systemic/immunology , Tertiary Lymphoid Structures/immunology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Disease Models, Animal , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Autoimmunity , Duffy Blood-Group System/genetics , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Cell Proliferation , Chemokine Receptor D6
4.
Pediatr Transplant ; 28(5): e14773, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38808702

ABSTRACT

BACKGROUND: Optimizing graft survival and diminishing human leukocyte antigen (HLA) sensitization are essential for pediatric kidney transplant recipients. More precise HLA matching predicting epitope mismatches could reduce alloreactivity. We investigated the association of predicted HLA B- and T-cell molecular mismatches with the formation of de novo donor-specific antibodies, HLA antibodies, rejection, and graft survival. METHODS: Forty-nine pediatric kidney transplant recipients transplanted from 2009 to 2020 were retrospectively studied. Donors and recipients were high-resolution HLA typed, and recipients were screened for HLA antibodies posttransplant. HLA-EMMA (HLA Epitope MisMatch Algorithm) and PIRCHE-II (Predicted Indirectly ReCognizable HLA Epitopes) predicted the molecular mismatches. The association of molecular mismatches and the end-points was explored with logistic regression. RESULTS: Five recipients (11%) developed de novo donor-specific antibodies. All five had de novo donor-specific antibodies against HLA class II, with four having HLA-DQ antibodies. We found no associations between PIRCHE-II or HLA-EMMA with de novo donor-specific antibodies, HLA sensitization, graft loss, or rejection. However, we did see a tendency towards an increased odds ratio in PIRCHE-II predicting de novo donor-specific antibodies formation, with an odds ratio of 1.12 (95% CI: 0.99; 1.28) on HLA class II. CONCLUSION: While the study revealed no significant associations between the number of molecular mismatches and outcomes, a notable trend was observed - indicating a reduced risk of dnDSA formation with improved molecular match. It is important to acknowledge, however, that the modest population size and limited observed outcomes preclude us from making definitive conclusions.


Subject(s)
Graft Rejection , Graft Survival , HLA Antigens , Histocompatibility Testing , Kidney Transplantation , T-Lymphocytes , Humans , Graft Rejection/immunology , Child , Graft Survival/immunology , Female , Male , Retrospective Studies , Adolescent , Child, Preschool , HLA Antigens/immunology , T-Lymphocytes/immunology , Isoantibodies/immunology , Isoantibodies/blood , Infant , HLA-B Antigens/immunology , B-Lymphocytes/immunology
6.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775157

ABSTRACT

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eµ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , T-Lymphocytes , Tumor Microenvironment , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Humans , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Cell Proliferation/drug effects , Bromodomain Containing Proteins , Proteins
7.
Front Cell Infect Microbiol ; 14: 1334211, 2024.
Article in English | MEDLINE | ID: mdl-38817444

ABSTRACT

Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-ß genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.


Subject(s)
Autophagy , Dendritic Cells , Echinococcosis , Echinococcus granulosus , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Echinococcus granulosus/immunology , Autophagy/immunology , Echinococcosis/immunology , Echinococcosis/parasitology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Lectins, C-Type/metabolism , Cytokines/metabolism , Female , Autophagosomes/immunology , Autophagosomes/metabolism
8.
Front Immunol ; 15: 1281111, 2024.
Article in English | MEDLINE | ID: mdl-38817614

ABSTRACT

Introduction: Sepsis remains a major cause of mortality and morbidity in infants. In recent years, several gene marker strategies for the early identification of sepsis have been proposed but only a few have been independently validated for adult cohorts and applicability to infant sepsis remains unclear. Biomarkers to assess disease severity and risks of shock also represent an important unmet need. Methods: To elucidate characteristics driving sepsis in infants, we assembled a multi-transcriptomic dataset from public microarray datasets originating from five independent studies pertaining to bacterial sepsis in infant < 6-months of age (total n=335). We utilized a COmbat co-normalization strategy to enable comparative evaluation across multiple studies while preserving the relationship between cases and controls. Results: We found good concordance with only two out of seven of the published adult sepsis gene signatures (accuracy > 80%), highlighting the narrow utility of adult-derived signatures for infant diagnosis. Pseudotime analysis of individual subjects' gene expression profiles showed a continuum of molecular changes forming tight clusters concurrent with disease progression between healthy controls and septic shock cases. In depth gene expression analyses between bacteremia, septic shock, and healthy controls characterized lymphocyte activity, hemostatic processes, and heightened innate immunity during the molecular transition toward a state of shock. Discussion: Our analysis revealed the presence of multiple significant transcriptomic perturbations that occur during the progression to septic shock in infants that are characterized by late-stage induction of clotting factors, in parallel with a heightened innate immune response and a suppression of adaptive cell functionality.


Subject(s)
Blood Coagulation , Immunity, Innate , Sepsis , Humans , Immunity, Innate/genetics , Infant , Blood Coagulation/genetics , Sepsis/immunology , Sepsis/genetics , Sepsis/diagnosis , Infant, Newborn , Male , Female , T-Lymphocytes/immunology , Gene Expression Profiling , Transcriptome , Severity of Illness Index , Biomarkers
9.
Biomaterials ; 309: 122607, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759487

ABSTRACT

The use of CAR-T cells in treating solid tumors frequently faces significant challenges, mainly due to the heterogeneity of tumor antigens. This study assessed the efficacy of an acidity-targeting transition-aided universal chimeric antigen receptor T (ATT-CAR-T) cell strategy, which is facilitated by an acidity-targeted transition. Specifically, the EGFRvIII peptide was attached to the N-terminus of a pH-low insertion peptide. Triggered by the acidic conditions of the tumor microenvironment, this peptide alters its structure and selectively integrates into the membrane of solid tumor cells. The acidity-targeted transition component effectively relocated the EGFRvIII peptide across various tumor cell membranes; thus, allowing the direct destruction of these cells by EGFRvIII-specific CAR-T cells. This method was efficient even when endogenous antigens were absent. In vivo tests showed marked antigen modification within the acidic tumor microenvironment using this component. Integrating this component with CAR-T cell therapy showed high effectiveness in combating solid tumors. These results highlight the capability of ATT-CAR-T cell therapy to address the challenges presented by tumor heterogeneity and expand the utility of CAR-T cell therapy in the treatment of solid tumors.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Receptors, Chimeric Antigen/immunology , Humans , Animals , Cell Line, Tumor , Hydrogen-Ion Concentration , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Neoplasms/immunology , Mice , ErbB Receptors/metabolism , T-Lymphocytes/immunology , Female
10.
Front Immunol ; 15: 1392477, 2024.
Article in English | MEDLINE | ID: mdl-38774878

ABSTRACT

Introduction: Accumulating evidence indicates the importance of T cell immunity in vaccination-induced protection against severe COVID-19 disease, especially against SARS-CoV-2 Variants-of-Concern (VOCs) that more readily escape from recognition by neutralizing antibodies. However, there is limited knowledge on the T cell responses across different age groups and the impact of CMV status after primary and booster vaccination with different vaccine combinations. Moreover, it remains unclear whether age has an effect on the ability of T cells to cross-react against VOCs. Methods: Therefore, we interrogated the Spike-specific T cell responses in healthy adults of the Dutch population across different ages, whom received different vaccine types for the primary series and/or booster vaccination, using IFNÉ£ ELISpot. Cells were stimulated with overlapping peptide pools of the ancestral Spike protein and different VOCs. Results: Robust Spike-specific T cell responses were detected in the vast majority of participants upon the primary vaccination series, regardless of the vaccine type (i.e. BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad26.COV2.S). Clearly, in the 70+ age group, responses were overall lower and showed more variation compared to younger age groups. Only in CMV-seropositive older adults (>70y) there was a significant inverse relation of age with T cell responses. Although T cell responses increased in all age groups after booster vaccination, Spike-specific T cell frequencies remained lower in the 70+ age group. Regardless of age or CMV status, primary mRNA-1273 vaccination followed by BNT162b2 booster vaccination showed limited booster effect compared to the BNT162b2/BNT162b2 or BNT162b2/mRNA-1273 primary-booster regimen. A modest reduction in cross-reactivity to the Alpha, Delta and Omicron BA.1, but not the Beta or Gamma variant, was observed after primary vaccination. Discussion: Together, this study shows that age, CMV status, but also the primary-booster vaccination regimen influence the height of the vaccination-induced Spike-specific T cell response, but did not impact the VOC cross-reactivity.


Subject(s)
COVID-19 , Cross Reactions , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Humans , Cross Reactions/immunology , SARS-CoV-2/immunology , Middle Aged , Adult , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Aged , Male , T-Lymphocytes/immunology , Female , Spike Glycoprotein, Coronavirus/immunology , Age Factors , Young Adult , COVID-19 Vaccines/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Immunization, Secondary , Cytomegalovirus/immunology , BNT162 Vaccine/immunology , Vaccination , 2019-nCoV Vaccine mRNA-1273/immunology , ChAdOx1 nCoV-19/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Aged, 80 and over
11.
Sci Transl Med ; 16(748): eadl2720, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776391

ABSTRACT

We present the preclinical pharmacology of BNT142, a lipid nanoparticle (LNP)-formulated RNA (RNA-LNP) encoding a T cell-engaging bispecific antibody that monovalently binds the T cell marker CD3 and bivalently binds claudin 6 (CLDN6), an oncofetal antigen that is absent from normal adult tissue but expressed on various solid tumors. Upon BNT142 RNA-LNP delivery in cell culture, mice, and cynomolgus monkeys, RNA is translated, followed by self-assembly into and secretion of the functional bispecific antibody RiboMab02.1. In vitro, RiboMab02.1 mediated CLDN6 target cell-specific activation and proliferation of T cells, and potent target cell killing. In mice and cynomolgus monkeys, intravenously administered BNT142 RNA-LNP maintained therapeutic serum concentrations of the encoded antibody. Concentrations of RNA-encoded RiboMab02.1 were maintained longer in circulation in mice than concentrations of directly injected, sequence-identical protein. Weekly injections of mice with BNT142 RNA-LNP in the 0.1- to 1-µg dose range were sufficient to eliminate CLDN6-positive subcutaneous human xenograft tumors and increase survival over controls. Tumor regression was associated with an influx of T cells and depletion of CLDN6-positive cells. BNT142 induced only transient and low cytokine production in CLDN6-positive tumor-bearing mice humanized with peripheral blood mononuclear cells (PBMCs). No signs of adverse effects from BNT142 RNA-LNP administration were observed in mice or cynomolgus monkeys. On the basis of these and other findings, a phase 1/2 first-in-human clinical trial has been initiated to assess the safety and preliminary efficacy of BNT142 RNA-LNP in patients with CLDN6-positive advanced solid tumors (NCT05262530).


Subject(s)
Antibodies, Bispecific , Claudins , Macaca fascicularis , T-Lymphocytes , Animals , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/pharmacokinetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Claudins/metabolism , Mice , RNA/metabolism , Female , Cell Line, Tumor , Xenograft Model Antitumor Assays , Liposomes , Nanoparticles
13.
Front Immunol ; 15: 1386727, 2024.
Article in English | MEDLINE | ID: mdl-38720888

ABSTRACT

Introduction: Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin. The Smyth chicken is the only model for vitiligo that shares all the characteristics of the human condition including: spontaneous post-natal loss of epidermal melanocytes, interactions between genetic, environmental and immunological factors, and associations with other autoimmune diseases. In addition, an avian model for vitiligo has the added benefit of an easily accessible target tissue (a growing feather) that allows for the repeated sampling of an individual and thus the continuous monitoring of local immune responses over time. Methods: Using a combination of flow cytometry and gene expression analyses, we sought to gain a comprehensive understanding of the initiating events leading to expression of vitiligo in growing feathers by monitoring the infiltration of leukocytes and concurrent immunological activities in the target tissue beginning prior to visual onset and continuing throughout disease development. Results: Here, we document a sequence of immunologically significant events, including characteristic rises in infiltrating B and αß T cells as well as evidence of active leukocyte recruitment and cell-mediated immune activities (CCL19, IFNG, GZMA) leading up to visual vitiligo onset. Examination of growing feathers from vitiligo-susceptible Brown line chickens revealed anti-inflammatory immune activities which may be responsible for preventing vitiligo (IL10, CTLA4, FOXP3). Furthermore, we detected positive correlations between infiltrating T cells and changes in their T cell receptor diversity supporting a T cell-specific immune response. Conclusion: Collectively, these results further support the notion of cell-mediated immune destruction of epidermal melanocytes in the pulp of growing feathers and open new avenues of study in the vitiligo-prone Smyth and vitiligo-susceptible Brown line chickens.


Subject(s)
Chickens , Disease Models, Animal , Feathers , Melanocytes , Vitiligo , Animals , Vitiligo/immunology , Chickens/immunology , Feathers/immunology , Melanocytes/immunology , Melanocytes/metabolism , T-Lymphocytes/immunology
14.
Front Immunol ; 15: 1389018, 2024.
Article in English | MEDLINE | ID: mdl-38720898

ABSTRACT

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Single-Domain Antibodies , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Single-Domain Antibodies/immunology , Immunotherapy, Adoptive/methods , Animals , Cell Line, Tumor , Mice , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Signaling Lymphocytic Activation Molecule Family/immunology , Signaling Lymphocytic Activation Molecule Family/metabolism , Single-Chain Antibodies/immunology , Xenograft Model Antitumor Assays
15.
Front Immunol ; 15: 1404121, 2024.
Article in English | MEDLINE | ID: mdl-38720900

ABSTRACT

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Subject(s)
T-Lymphocytes , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Antigens, Viral/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Cells, Cultured , Cancer Vaccines/immunology
16.
Front Immunol ; 15: 1388962, 2024.
Article in English | MEDLINE | ID: mdl-38720895

ABSTRACT

Introduction: Chronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells. Methods: Phytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels. Results: The tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity. Conclusion: Our results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells.


Subject(s)
Anti-Inflammatory Agents , Cytokines , Flowers , Lymphocyte Activation , Matricaria , Plant Extracts , T-Lymphocytes , Humans , Plant Extracts/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Matricaria/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Flowers/chemistry , Lymphocyte Activation/drug effects , Plant Roots/chemistry , Cells, Cultured , Cell Proliferation/drug effects , Cell Movement/drug effects
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 362-366, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710519

ABSTRACT

Ferroptosis is a novel form of cell death that is induced by excessive accumulation of ferrous ions and lipid peroxides. It triggers the release of damage-associated molecular patterns through autophagy-dependent mechanisms, serving as an adjunct to immunogenic cell death and activating both adaptive and innate immunity. In the tumor microenvironment, the regulation and influence of tumor cells and immune cells undergoing ferroptosis are regulated by various factors, which plays a crucial role in tumor development, treatment, and prognosis. This article provides an overview of the biological effects of ferroptosis on immune cells such as T cells, macrophages, neutrophils and B cells and tumor cells in the tumor microenvironment.


Subject(s)
Ferroptosis , Neoplasms , Tumor Microenvironment , Ferroptosis/immunology , Humans , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment/immunology , Animals , Macrophages/immunology , Neutrophils/immunology , Autophagy/immunology , Immunity, Innate , T-Lymphocytes/immunology , B-Lymphocytes/immunology
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 378-382, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710522

ABSTRACT

One of the most prevalent malignancies in women is cervical cancer. Cervical cancer is mostly brought on by chronic high-risk human papillomavirus 16 (HPV16) and HPV18 infection. Currently, the widely used HPV vaccines are the bivalent Cervarix, the tetravalent Gardasil, and the 9-valent Gardasil-9.There are differences in T cell effector molecule changes, B cell antibody level, duration, age and the injection after vaccination of the three vaccines.


Subject(s)
B-Lymphocytes , Papillomavirus Vaccines , T-Lymphocytes , Humans , Papillomavirus Vaccines/immunology , Papillomavirus Vaccines/administration & dosage , Female , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Vaccination , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/immunology , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/administration & dosage , Human Papillomavirus Viruses
19.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709874

ABSTRACT

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Subject(s)
Exosomes , Glioblastoma , Immunotherapy , Lymph Nodes , Exosomes/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , Animals , Mice , Gels/chemistry , Dendritic Cells/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Mice, Inbred C57BL
20.
Front Immunol ; 15: 1371708, 2024.
Article in English | MEDLINE | ID: mdl-38756769

ABSTRACT

Impaired metabolism is recognized as an important contributor to pathogenicity of T cells in Systemic Lupus Erythematosus (SLE). Over the last two decades, we have acquired significant knowledge about the signaling and transcriptomic programs related to metabolic rewiring in healthy and SLE T cells. However, our understanding of metabolic network activity derives largely from studying metabolic pathways in isolation. Here, we argue that enzymatic activities are necessarily coupled through mass and energy balance constraints with in-built network-wide dependencies and compensation mechanisms. Therefore, metabolic rewiring of T cells in SLE must be understood in the context of the entire network, including changes in metabolic demands such as shifts in biomass composition and cytokine secretion rates as well as changes in uptake/excretion rates of multiple nutrients and waste products. As a way forward, we suggest cell physiology experiments and integration of orthogonal metabolic measurements through computational modeling towards a comprehensive understanding of T cell metabolism in lupus.


Subject(s)
Lupus Erythematosus, Systemic , T-Lymphocytes , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/immunology , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Metabolic Networks and Pathways , Energy Metabolism , Animals , Signal Transduction , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...