ABSTRACT
Jun N-terminal kinase pathway-associated phosphatase (JKAP) regulates CD4+ T-cell differentiation and immunity, which are linked to mental disorders. This study aimed to explore the relationships between JKAP and T helper 17 (Th17)/regulatory T (Treg) ratio, as well as their associations with anxiety and depression in postpartum women. Serum JKAP were measured by enzyme-linked immunosorbent assay and blood Th17 and Treg cells were measured by flow cytometry in 250 postpartum women. Anxiety and depression were evaluated by the 6-item State-Trait Anxiety Inventory (STAI6) and Edinburgh Postnatal Depression Scale (EPDS). Anxiety and depression rates were 22.0 and 28.4%, respectively, among postpartum women. Notably, JKAP was negatively associated with the STAI6 (P=0.002) and EPDS scores (P<0.001) in postpartum women and was lower in postpartum women with anxiety (P=0.023) or depression (P=0.002) than in those without. Moreover, JKAP was inversely related to Th17 cells and Th17/Treg ratio but positively correlated with Treg cells in postpartum women (all P<0.001). Interestingly, Th17 cells and Th17/Treg ratio were both positively associated with STAI6 and EPDS scores in postpartum women (all P<0.001). Furthermore, Th17 cells and Th17/Treg ratio were lower in postpartum women with anxiety or depression than in those without (all P<0.01). Nevertheless, Treg cells were not linked to anxiety or depression in postpartum women. JKAP was negatively associated with Th17 cells and Th17/Treg ratio; moreover, they all related to anxiety and depression in postpartum women, indicating that JKAP may be involved in postpartum anxiety and depression via interactions with Th17 cells.
Subject(s)
Depression, Postpartum , Flow Cytometry , T-Lymphocytes, Regulatory , Th17 Cells , Humans , Female , Th17 Cells/immunology , Adult , Depression, Postpartum/blood , T-Lymphocytes, Regulatory/immunology , Postpartum Period/psychology , Postpartum Period/blood , Anxiety/immunology , Anxiety/blood , Enzyme-Linked Immunosorbent Assay , Psychiatric Status Rating Scales , Young AdultABSTRACT
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Subject(s)
5'-Nucleotidase , Adenosine , Apyrase , Dental Pulp , Mesenchymal Stem Cells , Periodontal Ligament , T-Lymphocytes , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Humans , Adenosine/metabolism , Dental Pulp/cytology , Dental Pulp/immunology , Dental Pulp/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , 5'-Nucleotidase/metabolism , Apyrase/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Adenosine Triphosphate/metabolism , Cells, Cultured , Gingiva/cytology , Gingiva/metabolism , Gingiva/immunology , Antigens, CD/metabolism , Immunomodulation , Cell Differentiation , Cell Proliferation , Dipeptidyl Peptidase 4/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , GPI-Linked ProteinsABSTRACT
Chikungunya virus (CHIKV) is an arbovirus causing acute febrile illness with severe joint pain, often leading to chronic arthralgia. This study investigated the adaptive immune responses during the early stages of symptomatic acute CHIKV infection, focusing on the transcription factors and cytokines linked to Th1, Th2, Th17, and Treg cells. Thirty-six individuals were enrolled: nine healthy controls and 27 CHIKV-positive patients confirmed by qRT-PCR. Blood samples were analyzed for the mRNA expression of transcription factors (Tbet, GATA3, FoxP3, STAT3, RORγt) and cytokines (IFN-γ, IL-4, IL-17, IL-22, TGF-ß, IL-10). The results showed the significant upregulation of Tbet, GATA3, FoxP3, STAT3, and RORγt in CHIKV-positive patients, with RORγt displaying the highest increase. Correspondingly, cytokines IFN-γ, IL-4, IL-17, and IL-22 were upregulated, while TGF-ß was downregulated. Principal component analysis (PCA) confirmed the distinct immune profiles between CHIKV-positive and healthy individuals. A correlation analysis indicated that higher Tbet expression correlated with a lower viral load, whereas FoxP3 and TGF-ß were associated with higher viral loads. Our study sheds light on the intricate immune responses during acute CHIKV infection, characterized by a mixed Th1, Th2, Th17, and Treg response profile. These results emphasize the complex interplay between different adaptive immune responses and how they may contribute to the pathogenesis of Chikungunya fever.
Subject(s)
Chikungunya Fever , Chikungunya virus , Cytokines , T-Lymphocytes, Helper-Inducer , Humans , Chikungunya Fever/immunology , Chikungunya Fever/virology , Cytokines/metabolism , Male , Female , Chikungunya virus/immunology , Adult , T-Lymphocytes, Helper-Inducer/immunology , Middle Aged , Young Adult , Transcription Factors/genetics , Transcription Factors/metabolism , T-Lymphocytes, Regulatory/immunology , Adaptive ImmunityABSTRACT
Human Immunodeficiency Virus (HIV) infection is among the most challenging issues in the healthcare system, presenting significant financial and hygiene problems with a wide range of clinical manifestations. Despite the hopeful outcomes of Antiretroviral Therapies (ARTs), the current strategies for the treatment of patients with HIV infection have not shown clinical significance for all subjects, which is mainly due to the complexity of the disease. Therefore, the need for collaborative and interdisciplinary research focused on deciphering the multifaceted cellular, and molecular immunopathogenesis of HIV remains essential in the development of innovative and more efficacious therapeutic approaches. T-regulatory (Treg) cells function as suppressors of effector T-cell responses contributing to the inhibition of autoimmune disorders and the limitation of chronic inflammatory diseases. Notably, these cells can play substantial roles in regulating immune responses, immunopathogenesis, viral persistence and disease progression, and affect therapeutic responses in HIV patients. In this review, we aim elucidating the role of T-regulatory cells (Tregs) in the immunopathogenesis of HIV, including immunological fatigue and seroconversion. In particular, the focus of the current study is exploration of novel immunotherapeutic approaches to target HIV or related co-infections.
Subject(s)
HIV Infections , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/immunology , HIV Infections/immunology , HIV Infections/drug therapyABSTRACT
INTRODUCTION: Probiotics provide therapeutic benefits not only in the gut but also other mucosal organs, including the lungs. OBJECTIVE AND DESIGN: To evaluate the effects of the probiotic strain L. delbrueckii UFV-H2b20 oral administration in an experimental murine model of A. fumigatus pulmonary infection. BALB/c mice were associated with L. delbrueckii and infected with Aspergillus fumigatus and compared with non-associated group. METHODS: We investigated survival, respiratory mechanics, histopathology, colony forming units, cytokines in bronchoalveolar lavage, IgA in feces, efferocytosis, production of reactive oxygen species and the cell population in the mesenteric lymph nodes. RESULTS: L. delbrueckii induces tolerogenic dendritic cells, IL-10+macrophages and FoxP3+regulatory T cells in mesenteric lymph nodes and increased IgA levels in feces; after infection with A. fumigatus, increased survival and decreased fungal burden. There was decreased lung vascular permeability without changes in the leukocyte profile. There was enhanced neutrophilic response and increased macrophage efferocytosis. L. delbrueckii-treated mice displayed more of FoxP3+Treg cells, TGF-ß and IL-10 levels in lungs, and concomitant decreased IL-1ß, IL-17 A, and CXCL1 production. CONCLUSION: Uur results indicate that L. delbrueckii UFV H2b20 ingestion improves immune responses, controlling pulmonary A. fumigatus infection. L. delbrueckii seems to play a role in pathogenesis control by promoting immune regulation.
Subject(s)
Aspergillus fumigatus , Cytokines , Lactobacillus delbrueckii , Lung , Mice, Inbred BALB C , Probiotics , Animals , Probiotics/administration & dosage , Aspergillus fumigatus/immunology , Lung/immunology , Lung/pathology , Lung/microbiology , Administration, Oral , Lactobacillus delbrueckii/immunology , Cytokines/immunology , Cytokines/metabolism , Mice , Aspergillosis/immunology , Aspergillosis/prevention & control , T-Lymphocytes, Regulatory/immunology , Immunoglobulin A/immunology , Female , Bronchoalveolar Lavage Fluid/immunology , Pulmonary Aspergillosis/immunology , Feces/microbiology , MaleABSTRACT
Background: Paracoccidioidomycosis (PCM) is a systemic endemic fungal disease prevalent in Latin America. Previous studies revealed that host immunity against PCM is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), regulatory T-cells (Tregs), and through the recruitment and activation of myeloid-derived suppressor cells (MDSCs). We have recently shown that Dectin-1, TLR2, and TLR4 signaling influence the IDO-1-mediated suppression caused by MDSCs. However, the contribution of these receptors in the production of important immunosuppressive molecules used by MDSCs has not yet been explored in pulmonary PCM. Methods: We evaluated the expression of PD-L1, IL-10, as well as nitrotyrosine by MDSCs after anti-Dectin-1, anti-TLR2, and anti-TLR4 antibody treatment followed by P. brasiliensis yeasts challenge in vitro. We also investigated the influence of PD-L1, IL-10, and nitrotyrosine in the suppressive activity of lung-infiltrating MDSCs of C57BL/6-WT, Dectin-1KO, TLR2KO, and TLR4KO mice after in vivo fungal infection. The suppressive activity of MDSCs was evaluated in cocultures of isolated MDSCs with activated T-cells. Results: A reduced expression of IL-10 and nitrotyrosine was observed after in vitro anti-Dectin-1 treatment of MDSCs challenged with fungal cells. This finding was further confirmed in vitro and in vivo by using Dectin-1KO mice. Furthermore, MDSCs derived from Dectin-1KO mice showed a significantly reduced immunosuppressive activity on the proliferation of CD4+ and CD8+ T lymphocytes. Blocking of TLR2 and TLR4 by mAbs and using MDSCs from TLR2KO and TLR4KO mice also reduced the production of suppressive molecules induced by fungal challenge. In vitro, MDSCs from TLR4KO mice presented a reduced suppressive capacity over the proliferation of CD4+ T-cells. Conclusion: We showed that the pathogen recognition receptors (PRRs) Dectin-1, TLR2, and TLR4 contribute to the suppressive activity of MDSCs by inducing the expression of several immunosuppressive molecules such as PD-L1, IL-10, and nitrotyrosine. This is the first demonstration of a complex network of PRRs signaling in the induction of several suppressive molecules by MDSCs and its contribution to the immunosuppressive mechanisms that control immunity and severity of pulmonary PCM.
Subject(s)
B7-H1 Antigen , Disease Models, Animal , Interleukin-10 , Lectins, C-Type , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Paracoccidioidomycosis , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , Mice , Interleukin-10/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Paracoccidioidomycosis/immunology , Paracoccidioides/immunology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , T-Lymphocytes, Regulatory/immunology , Lung/immunology , Lung/microbiology , Signal Transduction , Male , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Mice, KnockoutABSTRACT
INTRODUCTION: Pancreatic adenocarcinoma is an extremely aggressive neoplasm, with many challenges to be overcome in order to achieve a truly effective treatment. It is characterized by a mostly immunosuppressed environment, with dysfunctional immune cells and active immunoinhibitory pathways that favor tumor evasion and progression. Thus, the study and understanding of the tumor microenvironment and the various cells subtypes and their functional capacities are essential to achieve more effective treatments, especially with the use of new immunotherapeutics. METHODS: Seventy cases of pancreatic adenocarcinoma divided into two groups 43 with resectable disease and 27 with unresectable disease were analyzed using immunohistochemical methods regarding the expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), and human leukocyte antigen G (HLA-G) molecules as well as the populations of CD4+ and CD8+ T lymphocytes, regulatory T cells (Tregs), and M2 macrophages (MM2). Several statistical tests, including multivariate analyses, were performed to examine how those immune cells and immunoinhibitory molecules impact the evolution and prognosis of pancreatic adenocarcinoma. RESULTS: CD8+ T lymphocytes and M2 macrophages predominated in the group operated on, and PD-L2 expression predominated in the unresectable group. PD-L2 was associated with T stage, lymph node metastasis, and clinical staging, while in survival analysis, PD-L2 and HLA-G were associated with a shorter survival. In the inoperable cases, Tregs cells, MM2, PD-L1, PD-L2, and HLA-G were positively correlated. CONCLUSIONS: PD-L2 and HLA-G expression correlated with worse survival in the cases studied. Tumor microenvironment was characterized by a tolerant and immunosuppressed pattern, mainly in unresectable lesions, where a broad positive influence was observed between immunoinhibitory cells and immune checkpoint proteins expressed by tumor cells.
Subject(s)
Adenocarcinoma , B7-H1 Antigen , HLA-G Antigens , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Male , Female , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Middle Aged , Aged , Tumor Microenvironment/immunology , B7-H1 Antigen/metabolism , HLA-G Antigens/metabolism , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Prognosis , CD8-Positive T-Lymphocytes/immunology , Adult , T-Lymphocytes, Regulatory/immunology , Aged, 80 and over , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathologyABSTRACT
Giardiasis is a parasitic disease caused by Giardia lamblia (G. lamblia) that affects people worldwide. Still, few studies report on the immunoregulatory effects of the biomolecules of colostrum during interactions with G. lamblia. This study aimed to assess the concentrations of melatonin and cortisol hormones, the percentage of Treg cells, and the levels of cytokines IL-10 and TGF-ß in colostrum from mothers who tested positive for the parasite. This cross-sectional study analyzed colostrum samples from 25 puerperal. The samples were tested using an ELISA to determine if they were seropositive for G. lamblia and the type of antibody present (IgM and IgG). Based on the results, the samples were divided into three groups: a control group (N = 10) with no reaction to either IgM or IgG, a group seropositive for IgG (IgG+/IgM-; N = 8), and a group seropositive for IgM (IgM+/IgG-; N = 7). The concentrations of melatonin and cortisol were measured using the ELISA method. Additionally, cytokines IL-10 and TGF-ß and immunophenotyping were analyzed using flow cytometry. In the group that tested positive for IgM anti-G. lamblia, the concentration of melatonin was lower. However, in the colostrum from mothers who tested positive for IgG anti-G. lamblia, the level of this hormone had increased. The cortisol levels were similar between the groups, regardless of seropositivity. There was a higher percentage of Treg cells in the colostrum from mothers who tested positive for IgM anti-G. lamblia. TGF-ß levels also increased in the colostrum of mothers who tested positive for IgM anti-G. lamblia. In the seronegative group for G. lamblia, there was a positive correlation between melatonin concentration and the percentage of Treg cells. These data suggest that the increase in regulatory cells and cytokines and the reduction in melatonin in colostrum from mothers with recent giardia infection may contribute to the evolution and manifestation of the disease.
Subject(s)
Colostrum , Giardia lamblia , Giardiasis , Melatonin , T-Lymphocytes, Regulatory , Transforming Growth Factor beta , Melatonin/metabolism , Melatonin/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Humans , Female , Giardiasis/immunology , Giardiasis/parasitology , Giardia lamblia/immunology , Adult , Colostrum/immunology , Colostrum/chemistry , Cross-Sectional Studies , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Immunoglobulin M/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Hydrocortisone , Pregnancy , Young AdultABSTRACT
BACKGROUND: Previous studies have shown that failure to control inflammatory processes mediated by regulatory T (Treg) cells contributes to chronic obstructive pulmonary disease (COPD) development and progression. The activity of Treg cells depends on their phenotypic characteristics: resting Treg (rTreg, CD3+CD4+CD25+FOXP3+CD25++CD45RA+) and activated Treg (aTreg, CD3+CD4+CD25+FOXP3+CD25+++CD45RA-) cells exhibit immunosuppressive activity, while cytokine-secreting T cells (FrIII, CD3+CD4+CD25+FOXP3+CD25++CD45RA-) exhibit proinflammatory activity. Previous findings have shown an increased density of cytokine-secreting T cells in COPD patients experiencing exacerbation. However, the methods for evaluating COPD under stable conditions are lacking. AIM: To evaluate Treg cell phenotypes in patients with different stages of COPD under stable conditions. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from non-obstructed smokers and ex-smokers (NOS group, n = 19) and COPD patients at different stages (COPD I-II group, n = 25; COPD III-IV group, n = 25). The phenotypic characteristics of Treg cells and Th17 cells and their respective intracellular cytokines were analyzed by flow cytometry. RESULTS: Both obstructed groups showed an increase in the proportion of rTregs, while the COPD III-IV group showed additional increases in total Treg and Th17 cells and in IL-10+ cells. There was an increase in proinflammatory mediators (CD3+CD4+IL-17+ cells; CD3+CD4+RORγt+ cells) in the COPD I-II group. In contrast, the NOS group demonstrated high proportions of proinflammatory Treg cells and proinflammatory CD8+ T cells (CD3+CD8+IL-17+). CONCLUSION: Despite the increase in both total Treg cells and the rTreg phenotype from the early stages of COPD, there was a decrease in cells expressing IL-10, suggesting a failure in controlling the inflammatory process. These events precede the progression of the inflammatory process mediated by Th17 cells.
Subject(s)
Pulmonary Disease, Chronic Obstructive , T-Lymphocytes, Regulatory , Humans , Pulmonary Disease, Chronic Obstructive/immunology , T-Lymphocytes, Regulatory/immunology , Male , Aged , Middle Aged , Female , Phenotype , Th17 Cells/immunology , Cytokines/metabolism , Smoking/immunologyABSTRACT
BACKGROUND: Human T-cell lymphotropic virus type 1 (HTLV-1), also denominated Human T-cell leukemia virus-1, induces immune activation and secretion of proinflammatory cytokines, especially in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Regulatory T lymphocytes (Tregs) may control of inflammation through the production of regulatory cytokines, including IL10 and TGF-ß. In this study we determined the frequencies of CD4 + and CD8 + Tregs in a HAM/TSP population, compared to asymptomatic carriers and uninfected individuals, as well as investigated the profiles of regulatory and inflammatory cytokines. METHODS: Asymptomatic HTLV-1 carriers and HAM/TSP patients were matched by sex and age. The frequencies of IL10- and/or TGF-ß-producing Tregs were quantified by flow cytometry. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify HTLV-1 proviral load and the mRNA expression of cytokines and cellular receptors in peripheral blood mononuclear cells. RESULTS: Total frequencies of CD4 + Tregs, as well as the IL10-producing CD4 + and CD8 + Treg subsets, were statistically higher in patients with HAM/TSP compared to asymptomatic HTLV-1-infected individuals. In addition, a positive correlation was found between the frequency of CD4 + IL10 + Tregs and proviral load in the HAM/TSP patients evaluated. A positive correlation was also observed between gene expression of proinflammatory versus regulatory cytokines only in HAM / TSP group. CONCLUSIONS: A higher frequencies of IL10-producing Tregs were identified in patients with HAM/TSP. Imbalanced production of IL10 in relation to TGF-ß may contribute to the increased inflammatory response characteristically seen in HAM/TSP patients.
Subject(s)
Human T-lymphotropic virus 1 , Interleukin-10 , Paraparesis, Tropical Spastic , T-Lymphocytes, Regulatory , Transforming Growth Factor beta , Humans , T-Lymphocytes, Regulatory/immunology , Male , Female , Paraparesis, Tropical Spastic/immunology , Paraparesis, Tropical Spastic/virology , Interleukin-10/immunology , Interleukin-10/genetics , Middle Aged , Human T-lymphotropic virus 1/immunology , Transforming Growth Factor beta/metabolism , Adult , Viral Load , Aged , HTLV-I Infections/immunology , HTLV-I Infections/virology , Carrier State/immunology , Carrier State/virologyABSTRACT
Whilst the contribution of peripheral and central inflammation to neurodegeneration in Parkinson's disease and the role of the immune response in this disorder are well known, the effects of the anti-inflammatory response on the disease have not been described in depth. This study is aimed to assess the changes in the regulatory/inflammatory immune response in recently diagnosed, untreated PD patients and a year after. Twenty-one PD patients and 19 healthy controls were included and followed-up for 1 year. The levels of immunoregulatory cells (CD4+ Tregs, Bregs, and CD8+ Tregs); classical, nonclassical, and intermediate monocytes, and proinflammatory cells (Th1, Th2, and Th17) were measured by flow cytometry. Cytokine levels were determined by ELISA. Clinical follow-up was based on the Hoehn & Yahr and UDPRS scales. Our results indicate that the regulatory response in PD patients on follow-up was characterized by increased levels of active Tregs, functional Tregs, TR1, IL-10-producing functional Bregs, and IL-10-producing classical monocytes, along with decreased counts of Bregs and plasma cells. With respect to the proinflammatory immune response, peripheral levels of Th1 IFN-γ+ cells were decreased in treated PD patients, whilst the levels of CD4+ TBET+ cells, HLA-DR+ intermediate monocytes, IL-6, and IL-4 were increased after a 1-year follow-up. Our main finding was an increased regulatory T cell response after a 1-year follow-up and its link with clinical improvement in PD patients. In conclusion, after a 1-year follow-up, PD patients exhibited increased levels of regulatory populations, which correlated with clinical improvement. However, a persistent inflammatory environment and active immune response were observed.
Subject(s)
B-Lymphocytes, Regulatory , Interleukin-10 , Parkinson Disease , T-Lymphocytes, Regulatory , Humans , Parkinson Disease/immunology , Parkinson Disease/blood , Male , Female , T-Lymphocytes, Regulatory/immunology , Interleukin-10/immunology , Interleukin-10/blood , B-Lymphocytes, Regulatory/immunology , Middle Aged , Aged , Follow-Up StudiesABSTRACT
Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.
Subject(s)
Dimethyl Fumarate , Encephalomyelitis, Autoimmune, Experimental , Lymph Nodes , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymph Nodes/immunology , Lymph Nodes/drug effects , Mice , Female , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Mesentery , Cytokines/metabolism , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Disease Models, AnimalABSTRACT
Endometriosis's pathophysiology remains incompletely understood, with evidence pointing towards a dysregulated immune response. Regulatory T (Treg) cells, pivotal in maintaining self-tolerance, may facilitate the survival of ectopic endometrial cells within the abdominal cavity, thereby contributing to endometriosis development. This study aimed to assess the prevalence of CD39+CD73+ suppressor Treg cell subsets in the peripheral blood of endometriosis patients. This research focuses on the pivotal role of regulatory T-cells (Tregs), which are essential for maintaining immune tolerance and preventing autoimmune diseases. A case-control study was conducted, including 32 women diagnosed with endometriosis and 22 control subjects. The frequency of peripheral blood CD39+CD73+ suppressor Treg cells was quantified using flow cytometry. No significant differences were observed in the frequency of CD3+CD4+CD25High cells (Median [M]: 10.1; Interquartile Range [IQR]: 6.32â18.3 vs. M: 9.72; IQR: 6.22-19.8) or CD3+CD4+CD25HighCD39+Foxp3+ cells (M: 31.1; IQR: 19.7-44.0 vs. M: 30.55; IQR: 18.5-45.5) between controls and patients. However, a significantly lower frequency of CD3+CD4+CD25HighCD39+CD73+ cells was observed in the endometriosis group compared to controls (M: 1.98; IQR: 0.0377-3.17 vs. M: 2.25; IQR: 0.50-4.08; p = 0.0483), suggesting a reduction in systemic immune tolerance among these patients. This finding highlights the potential role of CD39 and CD73 expression on Treg cells as biomarkers for assessing disease severity and progression. Furthermore, elucidating the mechanisms driving these alterations may unveil new therapeutic strategies to restore immune equilibrium and mitigate endometriosis symptoms.
Subject(s)
Apyrase , Endometriosis , Flow Cytometry , Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Humans , Female , Endometriosis/immunology , Endometriosis/blood , T-Lymphocytes, Regulatory/immunology , Adult , Case-Control Studies , Forkhead Transcription Factors/blood , Forkhead Transcription Factors/analysis , Apyrase/analysis , 5'-Nucleotidase/blood , Young Adult , Antigens, CD/blood , Antigens, CD/analysis , Statistics, Nonparametric , Reference ValuesABSTRACT
Inflammatory bowel diseases (IBD) are a group of chronic inflammatory conditions of the gastrointestinal tract associated with multiple pathogenic factors, including dysregulation of the immune response. Effector CD4+ T cells and regulatory CD4+ T cells (Treg) are central players in maintaining the balance between tolerance and inflammation. Interestingly, genetic modifications in these cells have been implicated in regulating the commitment of specific phenotypes and immune functions. However, the transcriptional program controlling the pathogenic behavior of T helper cells in IBD progression is still unknown. In this study, we aimed to find master transcription regulators controlling the pathogenic behavior of effector CD4+ T cells upon gut inflammation. To achieve this goal, we used an animal model of IBD induced by the transfer of naïve CD4+ T cells into recombination-activating gene 1 (Rag1) deficient mice, which are devoid of lymphocytes. As a control, a group of Rag1-/- mice received the transfer of the whole CD4+ T cells population, which includes both effector T cells and Treg. When gut inflammation progressed, we isolated CD4+ T cells from the colonic lamina propria and spleen tissue, and performed bulk RNA-seq. We identified differentially up- and down-regulated genes by comparing samples from both experimental groups. We found 532 differentially expressed genes (DEGs) in the colon and 30 DEGs in the spleen, mostly related to Th1 response, leukocyte migration, and response to cytokines in lamina propria T-cells. We integrated these data into Gene Regulatory Networks to identify Master Regulators, identifying four up-regulated master gene regulators (Lef1, Dnmt1, Mybl2, and Jup) and only one down-regulated master regulator (Foxo3). The altered expression of master regulators observed in the transcriptomic analysis was confirmed by qRT-PCR analysis and found an up-regulation of Lef1 and Mybl2, but without differences on Dnmt1, Jup, and Foxo3. These two master regulators have been involved in T cells function and cell cycle progression, respectively. We identified two master regulator genes associated with the pathogenic behavior of effector CD4+ T cells in an animal model of IBD. These findings provide two new potential molecular targets for treating IBD.
Subject(s)
CD4-Positive T-Lymphocytes , Gene Regulatory Networks , Inflammatory Bowel Diseases , Animals , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice, Inbred C57BL , Mice, Knockout , Gene Expression RegulationABSTRACT
Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-ß or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-ß and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-ß-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-ß. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.
Subject(s)
CD11b Antigen , Encephalomyelitis, Autoimmune, Experimental , Interferon-gamma , Mice, Inbred C57BL , Myeloid Cells , Spleen , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Interferon-gamma/metabolism , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Spleen/immunology , CD11b Antigen/metabolism , Female , Myelin-Oligodendrocyte Glycoprotein/toxicity , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Transforming Growth Factor beta/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Forkhead Transcription Factors/metabolism , Disease Models, AnimalABSTRACT
Regulatory T cells play a crucial role in the homeostasis of the immune response. Regulatory T cells are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the regulatory T-cell master transcription factor. In addition, regulatory T cells can be induced from naive CD4+ T cells to express Foxp3 under specific conditions both in vivo (peripheral regulatory T cells) and in vitro (induced regulatory T cells). Both subsets of thymic regulatory T cells and peripheral regulatory T cells are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that induced regulatory T cells may be less stable compared to regulatory T cells, mainly due to epigenetic differences, accumulating evidence in animal models shows that induced regulatory T cells are stable in vivo and can be used for the treatment of inflammatory disorders, including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced regulatory T cells, as well as the key factors involved in induced regulatory T-cell transcriptional, metabolic, and epigenetic regulation, and discuss recent advances for de novo generation of stable regulatory T cells and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of induced regulatory T cells in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.
Subject(s)
Autoimmunity , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Humans , Animals , Immunotherapy/methods , Transplantation, Homologous , Epigenesis, Genetic , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Graft Rejection/immunology , Forkhead Transcription Factors/metabolismABSTRACT
To control immune responses, regulatory CD4+CD25+Foxp3+ T cells (Treg) maintain their wide and diverse repertoire through continuous arrival of recent thymic emigrants (RTE). However, during puberty, the activity of RTE starts to decline as a natural process of thymic involution, introducing consequences, not completely described, to the repertoire. Type 1 diabetes (T1D) patients show quantitative and qualitative impairments on the Treg cells. Our aim was to evaluate peripheral Treg and RTE cell frequencies, in T1D patients from two distinct age groups (young and adults) and verify if HLA phenotypes are concomitant associated. To this, blood samples from Brazilian twenty established T1D patients (12 young and 8 adults) and twenty-one healthy controls (11 young and 10 adults) were analyzed, by flow cytometry, to verify the percentages of CD4, Treg (CD4+CD25+Foxp3+) and the subsets of CD45RA+ (naive) and CD31+(RTE) within then. Furthermore, the HLA typing was also set. We observed that the young established T1D patients feature decreased frequencies in total Treg cells and naive RTE within Treg cells. Significant prevalence of HLA alleles, associated with risk, in T1D patients, was also identified. Performing a multivariate analysis, we confirmed that the cellular changes described offers significant variables that distinct T1D patients from the controls. Our data collectively highlight relevant aspects about homeostasis imbalances in the Treg cells of T1D patients, especially in young, and disease prognosis; that might contribute for future therapeutic strategies involving Treg cells manipulation.
Subject(s)
Diabetes Mellitus, Type 1 , Forkhead Transcription Factors , Interleukin-2 Receptor alpha Subunit , T-Lymphocytes, Regulatory , Thymus Gland , Humans , Diabetes Mellitus, Type 1/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Adult , Brazil , Male , Female , Forkhead Transcription Factors/metabolism , Thymus Gland/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Young Adult , Adolescent , Immunophenotyping , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , ChildABSTRACT
An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.
Subject(s)
Antigens, CD , Apyrase , CD8-Positive T-Lymphocytes , Chagas Disease , T-Lymphocytes, Regulatory , Trypanosoma cruzi , Animals , Chagas Disease/immunology , T-Lymphocytes, Regulatory/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Trypanosoma cruzi/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Apyrase/immunology , Apyrase/metabolism , Mice, Inbred C57BL , Disease Models, AnimalABSTRACT
OBJECTIVE: To carry out a preliminary analysis on the Treg lymphocyte counts present in the peripheral blood of allergic asthmatic children from the city of Cartagena, Colombia, compared to healthy controls. METHODS: We compared cytometry counts of ten asthmatic patients (age 7-16 years) and seven healthy controls (6-12 years), recruited in the city of Cartagena. Peripheral blood samples were stained using Cytek's 14-color cFluor Immunoprofiling kit (Cytek® cFluor® Immunoprofiling Kit 14 Color RUO kit), and analyzed on a Northern Lights™ spectral cytometer (Cytek® Biosciences, Fremont, CA, USA), to read 50.000 events per sample. The data obtained were analyzed in SpectroFlo® and FlowJo. The study was approved by the ethics committee of the University of Cartagena (SGR, Grant BPIN2020000100405). RESULTS: The frequency of CD3+, CD4+, CD25+, CD127- Tregs was 11% of all CD4+ T cells, with a range of minimum 8,1% and maximum 17,7%. There was no significant difference in the proportion of Tregs between allergic asthmatic patients and healthy controls (P = 0,2). CONCLUSIONS: With this preliminary sample size, no significant differences were found in the Treg lymphocyte population between allergic asthmatic patients and healthy controls. The 14-color multiplexed panel is a useful tool not only to count CD3+ and CD4+ populations, but also to obtain the percentage of regulatory T cells using cell surface markers.
OBJETIVO: Realizar un análisis preliminar sobre los conteos de linfocitos Tregs presentes en sangre periférica de niños asmáticos alérgicos de la ciudad de Cartagena, comparado con controles sanos. MÉTODOS: Se compararon los conteos de citometría de diez pacientes asmáticos (entre 7 y16 años) y siete controles sanos (entre 6 y12 años), reclutados en la ciudad de Cartagena. La muestra de sangre periférica fue teñida empleando el kit de inmunofenotipo multiplexado de 14 colores de Cytek (Cytek® cFluor® Immunoprofiling Kit 14 Color), y analizada en un citómetro espectral Northern Lights™ (Cytek® Biosciences, Fremont, CA, USA), a lectura de 50.000 eventos por muestra. Los datos obtenidos fueron analizados en SpectroFlo® y FlowJo. El estudio fue aprobado por el Comité de Ética de la Universidad de Cartagena. RESULTADOS: El panel de tinción funcionó apropiadamente y dentro de los parámetros apropiados. Se obtuvo un promedio de células Tregs CD3+, CD4+, CD25+ y CD127- del 11% de todos los CD4+ en las muestras estudiadas, con un rango de mínimo de 8,1% y un máximo de 17,7%. No hubo diferencias significativas en la proporción de linfocitos Tregs entre los pacientes asmáticos alérgicos y los controles sanos (P = 0.2). CONCLUSIONES: Con este tamaño de muestra preliminar, no se encontraron diferencias significativas en la población de linfocitos Tregs entre los pacientes asmáticos alérgicos y los controles sanos. El panel multiplexado de 14 colores es una herramienta útil no solo para derivar las poblaciones CD3+ y CD4+, sino también para obtener el porcentaje de células T reguladoras empleando marcadores de superficie celular.