Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.167
Filter
1.
Microb Drug Resist ; 30(9): 372-384, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39250785

ABSTRACT

Objective: This study aimed to evaluate antibiotic susceptibility and antimicrobial resistance trends among clinically significant anaerobes in Kuwait hospitals from 2013 to 2022, comparing these findings with data from 2002 to 2012. Methods: The study prospectively collected 2,317 anaerobic isolates from various body sites across four Kuwaiti hospitals between January 2013 and December 2022. The minimum inhibitory concentrations for 11 antianaerobic antibiotics were determined using E-test methodology. The study analyzed trends and resistance rates across two periods: 2013-2017 and 2018-2022, using statistical analysis for resistance comparison. Results: Of the 2,317 isolates, most were from wounds (42.2%), fluids (28.0%), and tissues (20.5%). Bacteroides fragilis was the most common pathogen (34.0%), followed by Prevotella bivia (13.4%). Over 90% of isolates were susceptible to imipenem, meropenem, tigecycline, and metronidazole, whereas lower susceptibility was observed for penicillin, amoxicillin-clavulanic acid, and clindamycin. Notable differences in resistance profiles since 2002 were observed, especially in amoxicillin-clavulanic acid, piperacillin, piperacillin-tazobactam, and clindamycin. Conclusion: Owing to detected resistance to all antibiotics, susceptibility testing for anaerobic isolates is recommended in severe infections to ensure effective antimicrobial therapy. Continuous surveillance is crucial for developing antibiotic policies to manage invasive anaerobic infections.


Subject(s)
Anti-Bacterial Agents , Bacteria, Anaerobic , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Bacteria, Anaerobic/drug effects , Kuwait/epidemiology , Humans , Prospective Studies , Tigecycline/pharmacology , Drug Resistance, Bacterial , Bacteroides fragilis/drug effects , Bacteroides fragilis/isolation & purification , Metronidazole/pharmacology , Metronidazole/therapeutic use
2.
Front Cell Infect Microbiol ; 14: 1444031, 2024.
Article in English | MEDLINE | ID: mdl-39282498

ABSTRACT

Tigecycline is a last-resort drug used to treat serious infections caused by multidrug-resistant bacteria. tet(X4) is a recently discovered plasmid-mediated tigecycline resistance gene that confers high-level resistance to tigecycline and other tetracyclines. Since the first discovery of tet(X4) in 2019, it has spread rapidly worldwide, and as a consequence, tigecycline has become increasingly ineffective in the clinical treatment of multidrug-resistant infections. In this study, we identified and analyzed tet(X4)-positive Escherichia coli isolates from duck farms in Hunan Province, China. In total, 976 samples were collected from nine duck farms. Antimicrobial susceptibility testing and whole-genome sequencing (WGS) were performed to establish the phenotypes and genotypes of tet(X4)-positive isolates. In addition, the genomic characteristics and transferability of tet(X4) were determined based on bioinformatics analysis and conjugation. We accordingly detected an E. coli strain harboring tet(X4) and seven other resistance genes in duck feces. Multi-locus sequence typing analysis revealed that this isolate belonged to a new clone, and subsequent genetic analysis indicated that tet(X4) was carried in a 4608-bp circular intermediate, flanked by ISVsa3-ORF2-abh elements. Moreover, it exhibited transferability to E. coli C600 with a frequency of 10-5. The detection of tet(X4)-harboring E, coli strains on duck farms enhances our understanding of tigecycline resistance dynamics. The transferable nature of the circular intermediate of tet(X4) contributing to the spread of tigecycline resistance genes poses a substantial threat to healthcare. Consequently, vigilant monitoring and proactive measures are necessary to prevent their spread.


Subject(s)
Anti-Bacterial Agents , Ducks , Escherichia coli Infections , Escherichia coli , Farms , Microbial Sensitivity Tests , Plasmids , Tigecycline , Whole Genome Sequencing , Ducks/microbiology , Tigecycline/pharmacology , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , China , Plasmids/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Feces/microbiology , Multilocus Sequence Typing , Drug Resistance, Multiple, Bacterial/genetics , Genotype , Poultry Diseases/microbiology , Escherichia coli Proteins/genetics , Gene Transfer, Horizontal , Drug Resistance, Bacterial/genetics
3.
Ann Med ; 56(1): 2397087, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39239861

ABSTRACT

PURPOSE: Infection by carbapenem-resistant Klebsiella pneumoniae (CRKP) has high mortality. There is no clear optimal therapeutic choice for pneumonia caused by CRKP. The aim of this study was to compare the clinical outcomes and safety of the standard doses of polymyxin B-based regimens vs tigecycline-based regimens and to identify risk factors for mortality. METHODS: This retrospective cohort study included patients with pneumonia caused by CRKP between January 1, 2020 and December 31, 2022. The primary outcomes were 7-day bacterial eradication rate and 14- and 28-day all-cause mortality. The secondary outcome was incidence of acute kidney injury. RESULTS: Seventy-three patients were included in this study, 29 in the polymyxin B-based combination therapy group and 44 in tigecycline-based combination therapy group. There were no significant differences between the two groups in terms of the 7-day bacterial eradication rate (31.03% vs 20.45%, p = 0.409), the 14-day all-cause mortality (37.93% vs 22.73%, p = 0.160), and the incidence of acute kidney injury (14.29% vs 6.82%, p = 0.526). The 28-day all-cause mortality in the polymyxin B-based therapy group was higher than in the tigecycline-based group (75.86% vs 45.45%, p = 0.010). Binary logistic regression analysis revealed that male and previous use of carbapenems were independent factors associated with 28-day all-cause mortality for patients treated with polymyxin B (p < 0.05). CONCLUSIONS: Polymyxin B-based combination therapy at the standard dose should be used with caution for patients with CRKP-induced pneumonia, especially for men who used carbapenems prior to CRKP detection.


Subject(s)
Anti-Bacterial Agents , Drug Therapy, Combination , Klebsiella Infections , Klebsiella pneumoniae , Polymyxin B , Tigecycline , Humans , Polymyxin B/administration & dosage , Polymyxin B/therapeutic use , Polymyxin B/adverse effects , Male , Retrospective Studies , Tigecycline/administration & dosage , Tigecycline/therapeutic use , Tigecycline/adverse effects , Female , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella Infections/mortality , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Aged , Klebsiella pneumoniae/drug effects , Middle Aged , Carbapenems/therapeutic use , Carbapenems/adverse effects , Carbapenems/administration & dosage , Treatment Outcome , Carbapenem-Resistant Enterobacteriaceae/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/mortality
4.
Ann Clin Microbiol Antimicrob ; 23(1): 73, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164718

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is the most commonly encountered pathogen in clinical practice. Widespread use of broad-spectrum antibiotics has led to the current global dissemination of carbapenem-resistant K. pneumoniae, which poses a significant threat to antibacterial treatment efficacy and public health. Outer membrane vesicles (OMVs) have been identified as carriers capable of facilitating the transfer of virulence and resistance genes. However, the role of OMVs in carbapenem-resistant K. pneumoniae under external pressures such as antibiotic and phage treatments remains unclear. METHODS: To isolate and purify OMVs under the pressure of phages and tigecycline, we subjected K. pneumoniae 0692 harboring plasmid-mediated blaNDM-1 and blaKPC-2 genes to density gradient separation. The double-layer plate method was used to isolate MJ1, which efficiently lysed K. pneumoniae 0692 cells. Transmission electron microscopy (TEM) was used to characterize the isolated phages and extract OMV groups for relevant morphological identification. Determination of protein content of each OMV group was conducted through bicinchoninic acid assay (BCA) and proteomic analysis. RESULTS: K. pneumoniae 0692 released OMVs in response to different environmental stimuli, which were characterized through TEM as having the typical structure and particle size of OMVs. Phage or tigecycline treatment alone resulted in a slight increase in the mean protein concentration of OMVs secreted by K. pneumoniae 0692 compared to that in the untreated group. However, when phage treatment was combined with tigecycline, there was a significant reduction in the average protein concentration of OMVs compared to tigecycline treatment alone. Proteomics showed that OMVs encapsulated numerous functional proteins and that under different external stresses of phages and tigecycline, the proteins carried by K. pneumoniae 0692-derived OMVs were significantly upregulated or downregulated compared with those in the untreated group. CONCLUSIONS: This study confirmed the ability of OMVs to carry abundant proteins and highlighted the important role of OMV-associated proteins in bacterial responses to phages and tigecycline, representing an important advancement in microbial resistance research.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Carbapenems , Klebsiella pneumoniae , Proteomics , Tigecycline , Tigecycline/pharmacology , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Humans , Extracellular Vesicles/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Plasmids/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Diagn Microbiol Infect Dis ; 110(2): 116435, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032320

ABSTRACT

PURPOSE: Mycobacterium abscessus complex (MABC) infections are increasing worldwide. Furthermore, these infections have a low treatment success rate due to their resistance to many current antibiotics. This study aimed to determine the overall in vitro activity of the tetracyclines doxycycline (DOX), minocycline (MIN), and tigecycline (TGC) against MABC clinical isolates. PATIENTS AND METHODS: A systematic review of PubMed/MEDLINE, Web of Science, and Embase was conducted up to August 28, 2023. Studies applying the drug susceptibility testing standards of the Clinical and Laboratory Standards Institute were considered. A random effects model was used to assess the total in vitro resistance rates of the MABC clinical isolates to DOX, MIN, and TGC. The I2 and Cochran's Q statistics were employed to evaluate the origins of heterogeneity. All analyses were conducted using CMA V.3 software. RESULTS: Twenty-six publications (22, 12, and 11 studies on DOX, MIN, and TGC, respectively) were included. The pooled in vitro resistance rates of the MABC clinical isolates to DOX and MIN at the breakpoint of 8 µg/mL were 93.0 % (95 % CI, 89.2 %-95.5 %) and 87.2 % (95 % CI, 76.5 %-93.4 %), respectively. In the case of TGC, the breakpoints of 2, 4, and 8 µg/mL were associated with pooled resistance rates of 2.5 % (95 % CI, 0.5 %-11.6 %), 7.2 % (95 % CI, 4.0 %-12.5 %), and 16.8 % (95 % CI, 4.7 %-45.0 %), respectively. CONCLUSION: Among the three examined tetracyclines, MABC exhibited extremely high resistance rates to DOX and MIN, thereby limiting their use in treating MABC infections. Conversely, MABC showed an increased susceptibility rate to TGC, highlighting TGC administration as a viable treatment option for patients with MABC infections.


Subject(s)
Anti-Bacterial Agents , Doxycycline , Microbial Sensitivity Tests , Minocycline , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Tigecycline , Minocycline/pharmacology , Minocycline/analogs & derivatives , Tigecycline/pharmacology , Humans , Doxycycline/pharmacology , Doxycycline/therapeutic use , Mycobacterium abscessus/drug effects , Anti-Bacterial Agents/pharmacology , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Drug Resistance, Bacterial
6.
Diagn Microbiol Infect Dis ; 110(2): 116408, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39079190

ABSTRACT

In this study, it was aimed to reveal the in vitro interactions of combinations of colistin with meropenem, rifampicin and tigecycline in colistin-resistant, biofilm-forming Klebsiella pneumonia. A total of 30 isolates, 15 of which formed biofilms and 15 did not form biofilms, were randomly selected from K. pneumoniae isolates growing in blood samples. The synergy rates of colistin-meropenem, colistin-tigecycline, colistin-rifampicin combinations in planktonic/sessile bacteria are; It was determined as 83,3%/73,3%, 66,6%/33,3%, 100%/60% respectively. Biofilm inhibitory concentration (BIC) of colistin, meropenem, tigecycline, and rifampicin significantly increased after biofilm formation. The synergistic activity seen in the sessile form was independent of the planktonic form. Although a high synergistic effect was observed in the meropenem-colistin combination on sessile bacteria, colistin had very high BIC ​​in all combinations. Large-scale studies are needed in which the number of isolates studied is large, bacterial resistance profiles are evaluated genomically, and various antimicrobial groups are included.


Subject(s)
Anti-Bacterial Agents , Biofilms , Colistin , Drug Synergism , Klebsiella Infections , Klebsiella pneumoniae , Meropenem , Microbial Sensitivity Tests , Rifampin , Tigecycline , Klebsiella pneumoniae/drug effects , Biofilms/drug effects , Colistin/pharmacology , Tigecycline/pharmacology , Rifampin/pharmacology , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Drug Resistance, Bacterial
7.
Biomolecules ; 14(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39062497

ABSTRACT

Tetracyclines constitute a unique class of antibiotic agents, widely prescribed for both community and hospital infections due to their broad spectrum of activity. Acting by disrupting protein synthesis through tight binding to the 30S ribosomal subunit, their interference is typically reversible, rendering them bacteriostatic in action. Resistance to tetracyclines has primarily been associated with changes in pump efflux or ribosomal protection mechanisms. To address this challenge, tetracycline molecules have been chemically modified, resulting in the development of third-generation tetracyclines. These novel tetracyclines offer significant advantages in treating infections, whether used alone or in combination therapies, especially in hospital settings. Beyond their conventional antimicrobial properties, research has highlighted their potential non-antibiotic properties, including their impact on immunomodulation and malignancy. This review will focus on third-generation tetracyclines, namely tigecycline, eravacycline, and omadacycline. We will delve into their mechanisms of action and resistance, while also evaluating their pros and cons over time. Additionally, we will explore their therapeutic potential, analyzing their primary indications of prescription, potential future uses, and non-antibiotic features. This review aims to provide valuable insights into the clinical applications of third-generation tetracyclines, thereby enhancing understanding and guiding optimal clinical use.


Subject(s)
Anti-Bacterial Agents , Tetracyclines , Tigecycline , Tetracyclines/therapeutic use , Tetracyclines/chemistry , Tetracyclines/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Tigecycline/therapeutic use , Tigecycline/pharmacology , Animals
8.
Microbiol Res ; 287: 127825, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39047663

ABSTRACT

Tigecycline and the newly Food and Drug Administration-approved tetracyclines, including eravacycline and omadacycline, are regarded as last-resort treatments for multidrug-resistant Enterobacterales. However, tigecycline resistance in Klebsiella pneumoniae has increased, especially the underlying mechanism of heteroresistance is unclear. This study aimed to elucidate the mechanisms underlying tigecycline resistance and heteroresistance in clinical K. pneumoniae isolates. A total of 153 clinical K. pneumoniae isolates were collected, and identified 15 tigecycline-resistant and three tigecycline-heteroresistant isolates using broth microdilution and population analysis profile methods, respectively. Total RNAs from K. pneumoniae ATCC13883 and the laboratory-induced tigecycline-resistant strain were extracted and sequenced on an Illumina platform. Differentially expressed genes and regulatory small RNAs (sRNAs) were analyzed and validated in clinical isolates of K. pneumoniae using quantitative real-time PCR. RNA sequencing results showed that mdtABC efflux pump genes were significantly upregulated in the tigecycline-resistant strains. Overexpression of mdtABC was observed in a clinical K. pneumoniae isolate, which increased tigecycline minimum inhibitory concentrations (MICs) and was involved in tigecycline heteroresistance. Sequencing analysis of sRNA demonstrated that candidate sRNA-120 directly interacted with the mdtABC operon and was downregulated in tigecycline-resistant strains. We generated an sRNA-120 deletion mutation strain and a complemented strain of K. pneumoniae. The sRNA-120 deletion strain displayed increased mRNA levels of mdtA, mdtB, and mdtC and an increase in MICs of tigecycline. The complemented strain of sRNA-120 restored the mRNA levels of these genes and the susceptibility to tigecycline. RNA antisense purification and parallel reaction monitoring mass spectrometry were performed to verify the interactions between sRNA-120 and mdtABC. Collectively, our study highlights that the post-transcriptional repression of mdtABC through sRNA-120 may provide an additional layer of efflux pump gene expression control, which is important for resistance and heteroresistance in clinical K. pneumoniae isolates.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Gene Expression Regulation, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Tigecycline , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , RNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Minocycline/pharmacology , Minocycline/analogs & derivatives
9.
Microbiol Spectr ; 12(9): e0049624, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39041815

ABSTRACT

Omadacycline and eravacycline are gradually being used as new tetracycline antibiotics for the clinical treatment of Gram-negative pathogens. Affected by various tetracycline-inactivating enzymes, there have been reports of resistance to eravacycline and omadacycline in recent years. We isolated a strain carrying the mobile tigecycline resistance gene tet(X4) from the feces of a patient in Zhejiang Province, China. The strain belongs to the rare ST485 sequence type. The isolate was identified as Klebsiella pneumoniae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The MICs of antimicrobial agents were determined using either the agar dilution method or the micro broth dilution method. The result showed that the isolate was resistant to eravacycline (MIC = 32 mg/L), omadacycline (MIC > 64 mg/L), and tigecycline (MIC > 32 mg/L). Whole-genome sequencing revealed that the tet(X4) resistance gene is located on the IncFII(pCRY) conjugative plasmid. tet(X4) is flanked by ISVsa3, and we hypothesize that this association contributes to the spread of the resistance gene. Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, and electrotransformation experiment. We successfully transferred the plasmid carrying tet(X4) to the recipient bacteria by electrotransformation experiment. Compared with the DH-5α, the MICs of the transformant L3995-DH5α were increased by eight-fold for eravacycline and two-fold higher for omadacycline. Overall, the emergence of plasmid-borne tet(X4) resistance gene in a clinical isolate of K. pneumoniae ST485 underscores the essential requirement for the ongoing monitoring of tet(X4) to prevent and control its further dissemination in China.IMPORTANCEThere are still limited reports on Klebsiella pneumoniae strains harboring tetracycline-resistant genes in China, and K. pneumoniae L3995hy adds a new example to those positive for the tet(X4) gene. Importantly, our study raises concerns that plasmid-mediated resistance to omadacycline and eravacycline may spread further to a variety of ecological and clinical pathogens, limiting the choice of medication for extensively drug-resistant bacterial infections. Therefore, it is important to continue to monitor the prevalence and spread of tet(X4) and other tetracyclines resistance genes in K. pneumoniae and diverse bacterial populations.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Plasmids , Tetracyclines , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , China , Drug Resistance, Multiple, Bacterial/genetics , Feces/microbiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Plasmids/genetics , Tetracycline Resistance/genetics , Tetracyclines/pharmacology , Tigecycline/pharmacology
10.
J Glob Antimicrob Resist ; 38: 349-353, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002612

ABSTRACT

OBJECTIVES: This study aimed to characterize a tigecycline-resistant hypervirulent Klebsiella pneumoniae (HvKP) strain, identified as KLZT, which carries the tigecycline resistance gene cluster tmexC2-tmexD2-toprJ2 belonging to ST29 and serotype K212. METHODS: Antimicrobial susceptibility and virulence phenotypes were assessed, followed by whole-genome sequencing (WGS) using PacBio II and MiSeq sequencers. Genome annotation was carried out using the RAST server and bioinformatics analysis revealed the genetic characteristics of this strain. RESULTS: Antimicrobial and virulence phenotype testing indicated that K. pneumoniae strain KLZT could be considered as a multidrug-resistant HvKP. WGS analysis showed that KLZT has a single 5,536,506-bp chromosome containing three plasmids 290,963 bp (pKLZT-1), 199,302 bp (pKLZT-2), and 4820 bp (pKLZT-3) in size, and also includes the ST29 and K212 serotypes. Four (blaSHV-187, oqxA, oqxB, and fosA6) and six resistance genes (tmexC2-tmxeD2-toprJ2, blaOXA-1, aac(6')-Ib-cr, catB3, arr-3, and blaLEN27) were identified from chromosomal and plasmid pKLZT-1, respectively. Gene-based analysis of the resistance genes of plasmid pKLZT-1 showed that the tigecycline resistance gene cluster-carrying region was flanked by umuC and umuD (umuD-hps-IS5-tmexC2-tmexD2-toprJ2-umuC), as well as other resistance genes and virulence factors (ureB, ureC, and ureG), which were carried by IS5075-Tn3-intI1 -aac(6')-Ib-cr-blaOXA-1-catB3-arr-3-blaLEN27-Tn3-ISkpn26-ureBCG-IS5075. CONCLUSIONS: WGS has revealed that a multidrug-resistant strain, HvKP KLZT, belonging to ST29 with capsular serotype K212, contains a multidrug-resistance plasmid.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Virulence , Plasmids/genetics , Animals , Tigecycline/pharmacology , Multigene Family , Genome, Bacterial , Humans , Serogroup , Virulence Factors/genetics , Bacterial Proteins/genetics , Mice
11.
J Glob Antimicrob Resist ; 38: 198-204, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39048055

ABSTRACT

OBJECTIVES: Clostridioides difficile ranks among the primary sources of healthcare-related infections and diarrhoea in numerous nations. We evaluated the drug susceptibility and resistance mechanisms of C. difficile isolates from a hospital in Chongqing, China, and identified resistance rates and resistance mechanisms that differed from previous findings. METHODS: The toxin genes and drug resistance genes of clinical strains were detected using Polymerase Chain Reaction (PCR), and these strains were subjected to Multilocus Sequence Typing (MLST). The agar dilution technique was employed for assessing susceptibility of antibiotics. Clinical data collection was completed through a review of electronic medical records. RESULTS: A total of 67 strains of toxin-producing C. difficile were detected. All C. difficile isolates demonstrated susceptibility to both metronidazole and vancomycin. However, resistance was observed in 8.95%, 16.42%, 56.72%, 56.72%, 31.34% and 5.97% of the isolates for tigecycline, tetracycline, clindamycin, erythromycin, moxifloxacin and rifampin, respectively. Among the strains with toxin genotypes A + B + CDT - and belonging to the ST3, six strains exhibited reduced susceptibility to tigecycline (MIC=0.5mg/L) and tetracycline (MIC=8mg/L). The tetA(P) and tetB(P) genes were present in these six strains, but were absent in tetracycline-resistant strains. Resistance genes (ermB, tetM, tetA(P) and tetB(P)) and mutations (in gyrA, gyrB, and rpoB) were identified in resistant strains. CONCLUSIONS: In contrast to prior studies, we found higher proportions of ST3 isolates with decreased tigecycline sensitivity, sharing similar resistance patterns and resistance genes. In the resistance process of tigecycline and tetracycline, the tetA(P) and tetB(P) genes may play a weak role.


Subject(s)
Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Hospitals, Teaching , Microbial Sensitivity Tests , Multilocus Sequence Typing , Clostridioides difficile/genetics , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Clostridioides difficile/classification , China , Humans , Anti-Bacterial Agents/pharmacology , Clostridium Infections/microbiology , Male , Female , Middle Aged , Aged , Bacterial Toxins/genetics , Tigecycline/pharmacology , Adult , Drug Resistance, Bacterial/genetics , Genotype , Metronidazole/pharmacology , Vancomycin/pharmacology , Polymerase Chain Reaction , Drug Resistance, Multiple, Bacterial/genetics
12.
J Glob Antimicrob Resist ; 38: 227-230, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004340

ABSTRACT

OBJECTIVES: To investigate the tet(X) gene, a determinant of tigecycline resistance, in the emerging pathogen Elizabethkingia meningoseptica and its association with an integrative and conjugative element (ICE). METHODS: All E. meningoseptica genomes from the National Center for Biotechnology Information (n = 87) were retrieved and annotated for resistome searches using the CARD database. A phylogenic analysis was performed based on the E. meningoseptica core genome. The ICE was identified through comparative genomics with other ICEs occurring in Elizabethkingia spp. RESULTS: Phylogenetic analysis revealed E. meningoseptica genomes from six countries distributed across different lineages, some of which persisted for years. The common resistome of these genomes included blaBlaB, blaCME, blaGOB, ranA/B, aadS, and catB (genes associated with resistance to ß-lactams, aminoglycosides, and chloramphenicol). Some genomes also presented additional resistance genes (dfrA, ereD, blaVEB, aadS, and tet(X)). Interestingly, tet(X) and aadS were located in an ICE of 49 769 bp (ICEEmSQ101), which was fully obtained from the E. meningoseptica SQ101 genome. We also showed evidence that the other 27 genomes harboured this ICE. The distribution of ICEEmSQ101, carrying tet(X), was restricted to a single Chinese lineage. CONCLUSIONS: The tet(X) gene is not prevalent in the species E. meningoseptica, as previously stated for the genus Elizabethkingia, since it is present only in a single Chinese lineage. We identified that several E. meningoseptica genomes harboured an ICE that mobilized the Elizabethkingia tet(X) gene and exhibited characteristics similar to the ICEs of other Flavobacteria, which would favour their transmission in this bacterial family.


Subject(s)
Anti-Bacterial Agents , Flavobacteriaceae Infections , Flavobacteriaceae , Genome, Bacterial , Phylogeny , Anti-Bacterial Agents/pharmacology , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae/genetics , Flavobacteriaceae/drug effects , Flavobacteriaceae/classification , Humans , Microbial Sensitivity Tests , Tigecycline/pharmacology , Conjugation, Genetic , Prevalence , Drug Resistance, Bacterial/genetics
13.
Front Cell Infect Microbiol ; 14: 1399732, 2024.
Article in English | MEDLINE | ID: mdl-39006743

ABSTRACT

Tigecycline serves as a last-resort antimicrobial agent against severe infections caused by multidrug-resistant bacteria. Tet(X) and its numerous variants encoding flavin-dependent monooxygenase can confer resistance to tigecycline, with tet(X4) being the most prevalent variant. This study aims to investigate the prevalence and characterize tigecycline resistance gene tet(X) in E. coli isolates from various origins in Yangzhou, China, to provide insights into tet(X) dissemination in this region. In 2022, we tested the presence of tet(X) in 618 E. coli isolates collected from diverse sources, including patients, pig-related samples, chicken-related samples, and vegetables in Yangzhou, China. The antimicrobial susceptibility of tet(X)-positive E. coli isolates was conducted using the agar dilution method or the broth microdilution method. Whole genome sequencing was performed on tet(X)-positive strains using Illumina and Oxford Nanopore platforms. Four isolates from pig or pork samples carried tet(X4) and exhibited resistance to multiple antimicrobial agents, including tigecycline. They were classified as ST542, ST10, ST761, and ST48, respectively. The tet(X4) gene was located on IncFIA8-IncHI1/ST17 (n=2), IncFIA18-IncFIB(K)-IncX1 (n=1), and IncX1 (n=1) plasmids, respectively. These tet(X4)-carrying plasmids exhibited high similarity to other tet(X4)-bearing plasmids with the same incompatible types found in diverse sources in China. They shared related genetic environments of tet(X4) associated with ISCR2, as observed in the first identified tet(X4)-bearing plasmid p47EC. In conclusion, although a low prevalence (0.65%) of tet(X) in E. coli strains was observed in this study, the horizontal transfer of tet(X4) among E. coli isolates mediated by pandemic plasmids and the mobile element ISCR2 raises great concerns. Thus, heightened surveillance and immediate action are imperative to curb this clinically significant resistance gene and preserve the efficacy of tigecycline.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Tigecycline , Tigecycline/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , China , Anti-Bacterial Agents/pharmacology , Swine , Animals , Escherichia coli Infections/microbiology , Humans , Plasmids/genetics , Chickens/microbiology , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Vegetables/microbiology , Escherichia coli Proteins/genetics
14.
Eur J Clin Microbiol Infect Dis ; 43(10): 2023-2027, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39073671

ABSTRACT

Carbapenem-resistant organisms (CRO) represent a significant threat because of their widespread in hospital settings, difficult-to-treat, and association with high morbidity and mortality rates. Data on the efficacy of ceftazidime/avibactam (CAZ-AVI) among patients infected with CRO in Iran are lacking. Herein, we report a case of a 91-year-old man with infection caused by extensively drug-resistant ST11 co-harbouring blaNDM and blaOXA-48-like strain from seven isolates. During ICU hospitalization, 10 different antibiotics were prescribed to the patient, and CAZ-AVI was experimentally prescribed in combination with tobramycin and tigecycline to the patient for the first time in the teaching hospitals of Isfahan City. The patient died on the 56th day of hospitalization. The present study revealed that the use of CAZ-AVI should be limited to targeted therapy after susceptibility results and minimum inhibitory concentration values are available to the treating clinicians and not be used for empirical therapy of patients with an infection caused by CRO, underscoring the urgent need for stringent policies for antibiotic stewardship to preserve the activity of novel ß-lactam/ß-lactamase inhibitors.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Humans , Azabicyclo Compounds/therapeutic use , Male , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Aged, 80 and over , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Fatal Outcome , Tigecycline/therapeutic use , Tigecycline/pharmacology , Iran
15.
J Infect Dev Ctries ; 18(7): 1157-1160, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39078790

ABSTRACT

INTRODUCTION: Tigecycline has a broad spectrum of activity, including activity against drug-resistant Gram-positive and -negative microorganisms. Its side effects are significant, but hypoglycemia is a rare finding during treatment. We aim to present an event of severe hypoglycemia in a patient with type 2 diabetes mellitus with replacement renal therapy, and hemodialysis after initiating tigecycline. CASE PRESENTATION: A 54-year-old female diagnosed with type 2 diabetes mellitus was under treatment with basal-bolus insulin therapy and oral antihypertensive drugs. She started hemodialysis 24 months ago. She complained of recurrent fever for the last seven months and was treated with several antibiotics. In two separate blood cultures, she tested positive for methicillin-resistant Staphylococcus epidermidis (MRSE). Based on the antibiogram, we started treatment with tigecycline 100 mg/day. After 6-8 hours from the first dose, the patient is complicated with events of hypoglycemia and then continues with severe hypoglycemia (40-47 mg/dL). The patient continued to have hypoglycemia for about 16-18 hours after the last dose. We didn't find any reasons to explain the cause of episodes of hypoglycemia. She did not have high blood insulin levels (insulin 4.11 mIU/L [range 2.6-24.9]). We followed her for six months and the patient did not experience episodes of hypoglycemia. CONCLUSIONS: The association of severe hypoglycemia with tigecycline treatment is a very rare event and published papers on this topic are limited. Clinicians should be aware of this rare event when administering tigecycline and should routinely check blood glucose level during the treatment.


Subject(s)
Anti-Bacterial Agents , Diabetes Mellitus, Type 2 , Hypoglycemia , Minocycline , Renal Dialysis , Staphylococcus epidermidis , Tigecycline , Humans , Tigecycline/adverse effects , Tigecycline/therapeutic use , Female , Middle Aged , Hypoglycemia/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Minocycline/analogs & derivatives , Minocycline/adverse effects , Minocycline/therapeutic use , Staphylococcal Infections/drug therapy
16.
BMJ Case Rep ; 17(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38885998

ABSTRACT

A man in his 40s with type 2 diabetes mellitus had persistent right-sided watery nasal discharge for 6 months following cerebrospinal fluid (CSF) leak repair at another hospital, prompting his visit to us due to recurring symptoms. Imaging revealed a CSF leak from the mid-clivus for which revision endoscopic CSF leak repair was done. Regrettably, he developed postoperative meningitis caused by multidrug-resistant (MDR) Klebsiella pneumoniaeManaging this complex case was a challenging task due to the pathogen's resistance to conventional drugs and the scarcity of scientific evidence. We initiated a culture-guided combination regimen with ceftazidime, avibactam, aztreonam and tigecycline. This decision stemmed from meticulous literature review and observed antibiotic synergy while testing for this organism.After 4 weeks of vigilant treatment, the patient's symptoms improved significantly, and CSF cultures were sterile. We present our approach to effectively confront and manage a challenging instance of postoperative MDR bacterial meningitis.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Meningitis, Bacterial , Humans , Male , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/microbiology , Anti-Bacterial Agents/therapeutic use , Cerebrospinal Fluid Leak/therapy , Adult , Postoperative Complications/drug therapy , Postoperative Complications/microbiology , Ceftazidime/therapeutic use , Ceftazidime/administration & dosage , Cranial Fossa, Posterior/surgery , Aztreonam/therapeutic use , Aztreonam/administration & dosage , Tigecycline/therapeutic use , Tigecycline/administration & dosage , Drug Combinations , Azabicyclo Compounds
17.
World J Microbiol Biotechnol ; 40(8): 233, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842631

ABSTRACT

Tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) is increasing and has emerged as a global public health issue. However, the mechanism of tigecycline resistance remains unclear. The objective of this study was to investigate the potential role of efflux pump system in tigecycline resistance. 29 tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains were collected and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The ramR, acrR, rpsJ, tet(A), and tet(X) were amplified by polymerase chain reaction (PCR). The mRNA expression of different efflux pump genes and regulator genes were analyzed by real-time PCR. Additionally, KP14 was selected for genome sequencing. KP14 genes without acrB, oqxB, and TetA were modified using suicide plasmids and MIC of tigecycline of KP14 with target genes knocked out was investigated. It was found that MIC of tigecycline of 20 out of the 29 TNSKP strains decreased by over four folds once combined with phenyl-arginine-ß-naphthylamide dihydrochloride (PaßN). Most strains exhibited upregulation of AcrAB and oqxAB efflux pumps. The strains with acrB, oqxB, and tetA genes knocked out were constructed, wherein the MIC of tigecycline of KP14∆acrB and KP14∆tetA was observed to be 2 µg/mL (decreased by 16 folds), the MIC of tigecycline of KP14ΔacrBΔTetA was 0.25 µg/mL (decreased by 128 folds), but the MIC of tigecycline of KP14∆oqxB remained unchanged at 32 µg/mL. The majority of TNSKP strains demonstrated increased expression of AcrAB-TolC and oqxAB, while certain strains showed mutations in other genes associated with tigecycline resistance. In KP14, both overexpression of AcrAB-TolC and tet(A) gene mutation contributed to the mechanism of tigecycline resistance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Tigecycline , Tigecycline/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Antiporters
18.
J Glob Antimicrob Resist ; 38: 158-162, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878896

ABSTRACT

OBJECTIVE: The aim of the present study is to explore the impact of the tet(A) type I variant (tetA-v1) on its fitness effect in Klebsiella pneumoniae. METHODS: Clinical K. pneumoniae strains were utilized as parental strains to generate strains carrying only the plasmid vector (pBBR1MCS-5) or the tetA-v1 recombinant plasmid (ptetA-v1). Antimicrobial susceptibility testing was conducted to estimate the contribution of tetA-v1 to drug resistance. Plasmid stability was evaluated by serial passage over 10 consecutive days in the absence of tigecycline. Biological fitness was examined through growth curve analysis, in vitro competition assays and a neutropenic mouse thigh infection model. RESULTS: A 2-4-fold increase in tigecycline MIC was observed following the acquisition of tetA-v1. Without tigecycline treatment, the stability of ptetA-v1 plasmids has been decreasing since day 1. The ptetA-v1 plasmid in Kp89, Kp91, and Kp93 exhibited a decrease of about 20% compared to the pBBR1MCS-5 plasmid. The acquisition of the tetA-v1 gene could inhibit the growth ability of K. pneumoniae strains both in vitro and in vivo. tetA-v1 gene imposed a fitness cost in K. pneumoniae, particularly in the CRKP strain Kp51, with a W value of approximately 0.56. CONCLUSION: The presence of tetA-v1 is associated with a significant fitness cost in K. pneumoniae in the absence of tigecycline, both in vitro and in vivo.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , Tigecycline , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Tigecycline/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Plasmids/genetics , Mice , Bacterial Proteins/genetics , Minocycline/analogs & derivatives , Minocycline/pharmacology , Humans , Disease Models, Animal , Drug Resistance, Bacterial/genetics , Genetic Fitness , Antiporters
19.
Microbiol Spectr ; 12(8): e0354823, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916360

ABSTRACT

The aim of this study was to evaluate the proportion of resistance to a temocillin, tigecycline, ciprofloxacin, and chloramphenicol phenotype called t2c2 that resulted from mutations within the ramAR locus among extended-spectrum ß-lactamases-Enterobacterales (ESBL-E) isolated in three intensive care units for 3 years in a French university hospital. Two parallel approaches were performed on all 443 ESBL-E included: (i) the minimal inhibitory concentrations of temocillin, tigecycline, ciprofloxacin, and chloramphenicol were determined and (ii) the genomes obtained from the Illumina sequencing platform were analyzed to determine multilocus sequence types, resistomes, and diversity of several tetR-associated genes including ramAR operon. Among the 443 ESBL-E strains included, isolates of Escherichia coli (n = 194), Klebsiella pneumoniae (n = 122), and Enterobacter cloacae complex (Ecc) (n = 127) were found. Thirty-one ESBL-E strains (7%), 16 K. pneumoniae (13.1%), and 15 Ecc (11.8%) presented the t2c2 phenotype in addition to their ESBL profile, whereas no E. coli presented these resistances. The t2c2 phenotype was invariably reversible by the addition of Phe-Arg-ß-naphthylamide, indicating a role of resistance-nodulation-division pumps in these observations. Mutations associated with the t2c2 phenotype were restricted to RamR, the ramAR intergenic region (IR), and AcrR. Mutations in RamR consisted of C- or N-terminal deletions and amino acid substitutions inside its DNA-binding domain or within key sites of protein-substrate interactions. The ramAR IR showed nucleotide substitutions involved in the RamR DNA-binding domain. This diversity of sequences suggested that RamR and the ramAR IR represent major genetic events for bacterial antimicrobial resistance.IMPORTANCEMorbimortality caused by infectious diseases is very high among patients hospitalized in intensive care units (ICUs). A part of these outcomes can be explained by antibiotic resistance, which delays the appropriate therapy. The transferable antibiotic resistance gene is a well-known mechanism to explain the high rate of multidrug resistance (MDR) bacteria in ICUs. This study describes the prevalence of chromosomal mutations, which led to additional antibiotic resistance among MDR bacteria. More than 12% of Klebsiella pneumoniae and Enterobacter cloacae complex strains presented mutations within the ramAR locus associated with a dysregulation of an efflux pump called AcrAB-TolC and a porin: OmpF. These dysregulations led to an increase in antibiotic output notably tigecycline, ciprofloxacin, and chloramphenicol associated with a decrease of input for beta-lactam, especially temocillin. Mutations within transcriptional regulators such as ramAR locus played a major role in antibiotic resistance dissemination and need to be further explored.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Chloramphenicol/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae Infections/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Multilocus Sequence Typing , Mutation , Tigecycline/pharmacology
20.
F1000Res ; 13: 36, 2024.
Article in English | MEDLINE | ID: mdl-38872735

ABSTRACT

Background: Tigecycline, a glycylcycline antibiotic is a promising option for the treatment of single or multidrug resistant pathogens. The aim of the study was to evaluate the in-vitro Tigecycline susceptibility of various pathogens from clinical samples received at the tertiary care hospitals in South India. Methods: The analysis of specimens from patients admitted were carried out in this prospective cross sectional study. The identification and antimicrobial susceptibility testing was performed by semi-automated Vitek 2 systems and Kirby Bauer method. Pattern of data analysis was done by descriptive statistics. Results: Among 2574 isolates, 812 isolates were Gram positive pathogens and 1762 isolates were Gram negative pathogens. Resistance to Tigecycline was more common among Gram negative pathogens (18.62%) in comparison to the Gram positive pathogens (0.49%). Among 740 Extended Spectrum Beta Lactamases (ESBL) producers such as Klebsiella species & E coli, 629 isolates were susceptible, and 93 isolates were resistant to the tigecycline. All the methicillin resistant Staphylococcus aureus (MRSA) isolates were susceptible to tigecycline. Conclusion: Multidrug resistant (MDR) pathogens like Acinetobacter species, and Klebsiella species were found to be highly effective in vitro to tigecycline for elimination of infections caused by both Gram positive and Gram negative pathogens. The use of combination therapy becomes crucial to prevent the development of Pan Drug resistance.


Subject(s)
Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Tertiary Care Centers , Tigecycline , Tigecycline/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross-Sectional Studies , Minocycline/analogs & derivatives , Minocycline/pharmacology , Minocycline/therapeutic use , Gram-Negative Bacteria/drug effects , Prospective Studies , India , Gram-Positive Bacteria/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL