Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 476
Filter
1.
Int J Biol Macromol ; 268(Pt 2): 131767, 2024 May.
Article in English | MEDLINE | ID: mdl-38657918

ABSTRACT

In this study, linalool-nanoparticles (L-NPs) were prepared (encapsulation efficiency was 68.54 %) and introduced pH-indicator film based on cranberry-extract (CEF) to develop multifunctional smart films. XRD analysis and FTIR spectroscopy indicated that cranberry-extract (CE) and L-NPs were uniformly distributed in the gelatin/agar matrix and could change the intermolecular structure of the film. Color change of smart films showed that CE endowed the film with pH-sensitive property. As CE and L-NPs were added to the film, the water contact angle (WCA) was increased from 57.03° to 117.73°, the elongation at break (EAB) was increased from 12.30 % to 34.60 %. Additionally, the introduction of L-NPs enhanced the antioxidant activity (DPPH free radical scavenging rate increased from 26.80 % to 36.35 %) and antibacterial activity (against S. aureus and E. coli) of the smart film, which were verified by its retarding effect on pork spoilage.


Subject(s)
Acyclic Monoterpenes , Antioxidants , Gelatin , Nanoparticles , Plant Extracts , Vaccinium macrocarpon , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Hydrogen-Ion Concentration , Gelatin/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Nanoparticles/chemistry , Vaccinium macrocarpon/chemistry , Agar/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests
2.
J Agric Food Chem ; 72(18): 10328-10338, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651941

ABSTRACT

This work seeks to generate new knowledge about the mechanisms underlying the protective effects of cranberry against urinary tract infections (UTI). Using Caco-2 cells grown in Transwell inserts as an intestinal barrier model, we found that a cranberry-derived digestive fluid (containing 135 ± 5 mg of phenolic compounds/L) increased transepithelial electrical resistance with respect to control (ΔTEER = 54.5 Ω cm2) and decreased FITC-dextran paracellular transport by about 30%, which was related to the upregulation of the gene expression of tight junction (TJ) proteins (i.e., occludin, zonula occludens-1 [ZO-1], and claudin-2) (∼3-4-fold change with respect to control for claudin-2 and ∼2-3-fold for occludin and ZO-1). Similar protective effects, albeit to a lesser extent, were observed when Caco-2 cells were previously infected with uropathogenic Escherichia coli (UPEC). In a urinary barrier model comprising T24 cells grown in Transwell inserts and either noninfected or UPEC-infected, treatments with the cranberry-derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and phenylacetic acid (PAA) (250 µM) also promoted favorable changes in barrier integrity and permeability. In this line, incubation of noninfected T24 cells with these metabolites induced positive regulatory effects on claudin-2 and ZO-1 expression (∼3.5- and ∼2-fold change with respect to control for DOPAC and ∼1.5- and >2-fold change with respect to control for PAA, respectively). Overall, these results suggest that the protective action of cranberry polyphenols against UTI might involve molecular mechanisms related to the integrity and functionality of the urothelium and intestinal epithelium.


Subject(s)
Plant Extracts , Polyphenols , Urinary Tract Infections , Vaccinium macrocarpon , Vaccinium macrocarpon/chemistry , Humans , Urinary Tract Infections/prevention & control , Urinary Tract Infections/microbiology , Polyphenols/pharmacology , Polyphenols/chemistry , Polyphenols/metabolism , Caco-2 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Occludin/genetics , Occludin/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Tight Junctions/metabolism , Tight Junctions/drug effects , Fruit/chemistry , Intestines/drug effects , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology
3.
J Food Sci ; 89(5): 2857-2866, 2024 May.
Article in English | MEDLINE | ID: mdl-38532702

ABSTRACT

The separation sheets for fruit leather are traditionally made of plastic film or wax paper, which not only leads to environmental issues but also is inconvenience to consumers. This study evaluated edible fruit leather separation sheets using food polymers, including hydroxypropyl methyl cellulose (HPMC) and incorporation of cranberry pomace water extract (CPE) for providing natural fruit pigment, flavor, and phenolics. HPMCCPE film was then further improved by incorporating hydrophobic compound (oleic acid, OA) and vitamin E (VE) via cellulose nanocrystal (CNC) Pickering emulsion (CNCP) for enhancing film hydrophobicity and nutritional benefit, respectively. The CNCP-HPMCCPE film exhibited reduced water vapor permeability (∼0.033 g mm/m2 d Pa) compared to HPMCCPE film (∼0.59 g mm/m2 d Pa) and had the least change in mass and moisture content when wrapping fruit leather for up to 2 weeks of ambient storage. The fruit leather wrapped by CNCP-HPMCCPE film showed lower weight change than those by films without CNCP due to low mass transfer between film and fruit leather. CNCP resulted in controlled release of VE into a food simulating solvent (ethanol). The developed colorful and edible fruit leather separation sheet satisfied the increased market demands on sustainable food packaging. PRACTICAL APPLICATION: Colorful and flavorful edible films made of edible polymers, fruit pomace water extract, and emulsified hydrophobic compounds with vitamin E were created. The films have the satisfactory performance to replace the conventional fruit leather separation sheet made of plastic or wax paper. The edible films can be eaten with packaged fruit leather for not only reducing packaging waste but also providing convenience and nutritional benefit to consumers. These functional edible films may also be utilized to package other food products for promoting packaging sustainability and nutritional benefit.


Subject(s)
Edible Films , Food Packaging , Fruit , Plant Extracts , Vaccinium macrocarpon , Vitamin E , Vaccinium macrocarpon/chemistry , Vitamin E/analysis , Plant Extracts/chemistry , Fruit/chemistry , Food Packaging/methods , Hydrophobic and Hydrophilic Interactions , Permeability , Hypromellose Derivatives/chemistry , Food, Fortified/analysis , Oleic Acid/analysis , Oleic Acid/chemistry
4.
Food Chem ; 445: 138778, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38394909

ABSTRACT

Phenolic compounds are considered an important group of bioactive molecules that are present in abundant quantities in fruits such as berries and cherries; hence, the analysis and quantification of these compounds are of significant interest to the scientific community. The current study aimed to develop a novel analytical method using liquid chromatography and high-resolution mass spectrometry (UHPLC-HRMS) for the rapid, comprehensive and simultaneous analysis of 66 phenolic compounds optimized for the selected five types of fruits commercially available in Canada. Bioactive compounds that could potentially be metabolite markers for each berry were identified. Various phenolic compounds were identified and quantified in all five selected fruits. Notably, blackberries were rich in anthocyanins such as cyanidin-3-glucoside (368.4 ± 6 µg/g), while blueberries were rich in peonidin-3-glucoside (1083 ± 9 µg/g). In addition, raspberries and cherries contained significant amounts of cyanidin-3-rutinoside, at 3156 ± 36 µg/g and 301.3 ± 2 µg/g, respectively, while cranberries contained the highest concentrations of petunidin at 829.7 ± 3 µg/g. The newly developed and validated UHPLC-HRMS method proved helpful in comprehensively analyzing phenolic compounds in blueberry, raspberry, cranberry, blackberry and cherry. Identifying and quantifying bioactives can lead to applications in neutraceutical and pharmaceutical industries by using phenolic-rich berry extracts in functional foods, supplements, or pharmaceutical products.


Subject(s)
Blueberry Plants , Rubus , Vaccinium macrocarpon , Anthocyanins/analysis , Rubus/chemistry , Fruit/chemistry , Blueberry Plants/chemistry , Vaccinium macrocarpon/chemistry , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Phenols/analysis
5.
J Agric Food Chem ; 72(8): 4184-4194, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38350030

ABSTRACT

Cranberries contain proanthocyanidins with different interflavan bond types and degrees of polymerization. These chemical differences may impact the metabolism of proanthocyanidins by the intestinal microbiome. In our previous study, we found that healthy microbiomes produced higher concentrations of the phenolic acid metabolites 5-(3',4'-dihydroxyphenyl)-g-valerolactone and 3-hydroxyphenylacetic acid from the cranberry extract in comparison to ulcerative colitis (UC) microbiomes ex vivo. To understand this difference, LC-ESI-MS/MS was utilized to characterize the metabolism of the precursor proanthocyanidins. Healthy microbiomes metabolized procyanidin A2, procyanidin B2, and procyanidin dimeric intermediates but not A-type trimers, to a greater extent than UC microbiomes. The metabolism of procyanidin A2 and procyanidin B2 by fecal microorganisms was then compared to identify their derived phenolic acid metabolites. 5-(3',4'-Dihydroxyphenyl)-g-valerolactone and 3-hydroxyphenylacetic acid were identified as unique metabolites of procyanidin B2. Based on these results, the metabolism of procyanidin B2 contributed to the differential metabolism observed between healthy and UC microbiomes.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Hydroxybenzoates , Microbiota , Phenylacetates , Proanthocyanidins , Vaccinium macrocarpon , Proanthocyanidins/chemistry , Vaccinium macrocarpon/chemistry , Tandem Mass Spectrometry , Dysbiosis , Colitis, Ulcerative/drug therapy , Fruit/chemistry , Plant Extracts/chemistry
6.
Molecules ; 28(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067623

ABSTRACT

This study investigated the in vitro antioxidant and biological properties of ethanol extracts obtained from the fruits of the highbush cranberry. The produced extracts exhibited a high content of polyphenols (1041.9 mg 100 g d.m.-1) and a high antioxidant activity (2271.2 mg TE g 100 d.m.-1 using the DPPH method, 1781.5 mg TE g 100 d.m.-1 using the ABTS method), as well as a substantial amount of vitamin C (418.2 mg 100 g d.m.-1). These extracts also demonstrated significant in vitro biological activity. Studies conducted on the Saccharomyces cerevisiae cellular model revealed the strong antioxidant effects of the extract, attributed to a significant reduction in the levels of reactive oxygen species (ROS) within the cells, confirming the utility of the extracts in mitigating oxidative stress. Moreover, inhibitory properties were demonstrated against factors activating metabolic processes characteristic of inflammatory conditions. It was observed that the cranberry extract inhibits the activity of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) non-selectively. Additionally, the extract was found to be a highly active inhibitor of acetylcholinesterase (AChE), potentially suggesting the applicability of this extract in the prevention of neurodegenerative diseases, including Alzheimer's disease.


Subject(s)
Antioxidants , Vaccinium macrocarpon , Antioxidants/chemistry , Vaccinium macrocarpon/chemistry , Fruit/chemistry , Acetylcholinesterase , Plant Extracts/chemistry
7.
Molecules ; 28(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570858

ABSTRACT

This study was carried out to analyze the accumulation patterns of anthocyanins, proanthocyanidins, flavonols, chlorogenic acid, and triterpene compounds in fruit samples of Vaccinium oxycoccos L. berries growing in the Cepkeliai State Strict Nature Reserve in Lithuania. Studies were carried out on the phytochemical composition of cranberry fruit samples during the period of 2020-2022. Anthocyanins, flavonols, chlorogenic acid and triterpene compounds were identified and quantified using UPLC-DAD methods, and proanthocyanins were determined using spectrophotometric methods. The content of identified compounds varied, as reflected in the total amounts of anthocyanins (710.3 ± 40 µg/g to 6993.8 ± 119 µg/g), proanthocyanidins (378.4 ± 10 µg EE/g to 3557. 3 ± 75 µg EE/g), flavonols (479.6 ± 9 µg/g to 7291.2 ± 226 µg/g), chlorogenic acid (68.0 ± 1 µg/g to 3858.2 ± 119 µg/g), and triterpenoids (3780.8 ± 98 µg/g to 7226.9 ± 224 µg/g). Cranberry fruit samples harvested from open oligotrophic wetland habitats contained higher levels of anthocyanins, anthocyanidins, flavonol glycosides, and proanthocyanidins. The highest levels of triterpene compounds were found in the cranberry fruits harvested in the spring of the following year after the snowmelt. The use of principal component analysis showed that cranberry plant material harvested in October and November had higher levels of bioactive compounds.


Subject(s)
Proanthocyanidins , Vaccinium macrocarpon , Vaccinium , Vaccinium/chemistry , Anthocyanins/analysis , Fruit/chemistry , Proanthocyanidins/analysis , Chlorogenic Acid/analysis , Vaccinium macrocarpon/chemistry , Flavonols/analysis , Plant Extracts/chemistry , Chromatography, High Pressure Liquid
8.
J Agric Food Chem ; 71(28): 10710-10717, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37431749

ABSTRACT

Shelf-stable cranberry juice precipitate has not been well characterized. Here, we describe using 1H-13C heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) spectroscopy for cranberry juice analysis, focusing on proanthocyanidins and the precipitate. HSQC-NMR cross-peaks from juices were categorized as aliphatic, olefinic, aromatic, carbohydrate backbone, or anomeric signals. An average cranberry juice precipitate had significantly more aromatic and significantly less carbohydrate backbone signals than an average supernatant. The precipitate was a collection of biomolecules held together by a mix of weak and strong intermolecular forces. Proanthocyanidin signals from precipitates of juices showed 22 ± 2 to 29.9 ± 0.7% A-type interflavan linkages and 34 ± 2 to 48 ± 3% of flavan-3-ol units with trans stereochemistry between the C2 and C3 positions. Based on this work, 1H-13C HSQC-NMR is useful to analyze cranberry juice and reveals the complex chemical nature of components in the soluble and insoluble phases.


Subject(s)
Vaccinium macrocarpon , Vaccinium macrocarpon/chemistry , Plant Extracts/analysis , Fruit/chemistry , Carbohydrates/analysis
9.
Anticancer Res ; 43(7): 2933-2939, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37351982

ABSTRACT

BACKGROUND/AIM: Lung cancer is the leading cause of mortality due to cancer death. Treatment of lung adenocarcinoma (LUAD) is still challenging. Cranberries contain many rich bioactive components that may help fight cancer. The action of cranberry against some cancer types has been reported, however, its role in lung cancer has only been investigated in large-cell lung cancer. In this study, we expanded current research on the role of cranberry in LUAD. MATERIALS AND METHODS: A549 LUAD cancer cells were treated with commercial cranberry extract (CE). Proliferation of A549 cells was measured with a clonogenic survival assay and quick proliferation assay. Caspase-3 activity was used to evaluate apoptosis of A549 cells. Reverse transcriptase-polymerase chain reaction was conducted to investigate the possible molecular mechanisms involved in the action of CE. RESULTS: Treatment of LUAD with CE reduced the percentage of A549 colonies. This was consistent with the decrease in the optic density of cancer cells after treatment with CE. Caspase-3 activity increased after treatment with CE. The anti-proliferative effect of CE on A549 cells correlated with reduced expression of pro-proliferation molecules cyclin E, cyclin-dependent kinase 2 (CDK2) and CDK4. The pro-apoptotic effect of CE on A549 cells correlated with the reduced expression of the anti-apoptotic molecule caspase 8 and FADD-like apoptosis regulator (FLIP). CONCLUSION: CE had an inhibitory effect on the growth of LUAD cells by modulation of both pro-proliferative and anti-apoptotic molecules. Our research hopes to guide future treatment options for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Plant Extracts , Vaccinium macrocarpon , Vaccinium macrocarpon/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Adenocarcinoma of Lung/drug therapy , A549 Cells , Humans , Lung Neoplasms/drug therapy , Caspase 3/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/metabolism , Apoptosis
10.
Nutrients ; 15(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36986152

ABSTRACT

Berries are important components of the human diet, valued for their high content of nutrients and active compounds. Berry seeds are also important objects of scientific investigation as, in some cases, they can have a higher concentration of certain phytochemicals than other parts of the fruit. Moreover, they are often byproducts of the food industry that can be reused to make oil, extracts, or flour. We have reviewed available literature related to the chemical content and biological activity of seeds from five different berry species-red raspberry (Rubus idaeus L. and Rubus coreanus Miq.), strawberry (Fragaria x ananassa), grape (Vitis vinifera L.), sea buckthorn (Hippophae rhamnoides L.), and cranberry (Vaccinium macrocarpon Ait.). We have searched various databases, including PubMed, Web of Knowledge, ScienceDirect, and Scopus. Last search was conducted on 16.01.2023. Various preparations from berry seeds are valuable sources of bioactive phytochemicals and could be used as functional foods or to make pharmaceuticals or cosmetics. Some products, like oil, flour, or extracts, are already available on the market. However, many preparations and compounds still lack appropriate evidence for their effectiveness in vivo, so their activity should first be assessed in animal studies and clinical trials.


Subject(s)
Fragaria , Hippophae , Rubus , Vaccinium macrocarpon , Animals , Humans , Fruit/chemistry , Seeds/chemistry , Plant Extracts/chemistry , Diet , Fragaria/chemistry , Hippophae/chemistry , Vaccinium macrocarpon/chemistry , Phytochemicals/analysis
11.
Nutr Res ; 109: 58-70, 2023 01.
Article in English | MEDLINE | ID: mdl-36587538

ABSTRACT

Intake biomarkers of cranberry juice in women can assess consumption in clinical trials. Discriminant biomarkers in urine may explain urinary tract infection (UTI) preventive activities. We hypothesized that validated and annotated discriminant metabolites in human urine could be used as intake biomarkers in building predictive multivariate models to classify cranberry consumers. Urine samples were collected from 16 healthy women aged 18 to 29 years at baseline and after 3- and 21-day consumption of cranberry or placebo juice in a double-blind, crossover study. Urine metabolomes were analyzed using ultra high-performance liquid chromatography coupled with Orbitrap mass spectrometry. Paired and unpaired multivariate analyses were used to annotate or identify discriminant metabolic features after cranberry consumption. Twenty-six discriminant metabolic features (paired analysis) and 27 (unpaired analysis) after cranberry consumption in an open-label intervention were rediscovered in the blinded study. These metabolites included exogenous (quinic acid) and endogenous ones (hippuric acid). The paired analysis showed better model fitting with partial least-square discriminant analysis models built on all metabolites than the unpaired analysis. Predictive models built on shared metabolites by the unpaired analysis were able to classify cranberry juice consumers with 84.4% to 100% correction rates, overall better than the paired analysis (50%-100%). The double-blind study validated discriminant metabolites from a previous open-label study. These urinary metabolites may be associated with the ability of cranberries to prevent UTIs and serve as potential cranberry intake biomarkers. It reveals the importance of selecting the right predictive models to classify cranberry consumers with higher than 95% correction rates.


Subject(s)
Urinary Tract Infections , Vaccinium macrocarpon , Humans , Female , Vaccinium macrocarpon/chemistry , Cross-Over Studies , Urinary Tract Infections/prevention & control , Urinary Tract Infections/drug therapy , Metabolome , Plant Extracts , Biomarkers/urine
12.
Odontology ; 111(3): 541-553, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36495398

ABSTRACT

The purpose of this study was to perform an integrative review on the effects of cranberry and grape seed extracts concerning the disinfection of root canals maintaining the strength of the remnant tooth tissues' structure. A bibliographical search was carried out on the PubMed electronic platform using the following key terms: cranberry, grape seed, vaccinium macrocarpon, proanthocyanidin, antibacterial, antimicrobial, decontamination, disinfection, bacteria removal, bacteria eradication, bacteria elimination, endodontic, root canal, faecalis, and strength. The inclusion criteria involved articles published in the English language, until March, 2022, reporting the antibacterial effect of grape seed and cranberry extracts. Of 185 studies identified, 13 studies were selected for the present review. The grape seed extract (GSE), composed of proanthocyanidins, showed an antioxidant activity against the main bacteria found in endodontic secondary infection. The percentage of bacteria removal was recorded at around 96.97% by using GSE. Studies on cranberry extracts, which are composed of proanthocyanidins, revealed antimicrobial effects against bacteria related to periodontitis and dental caries. Additionally, GSE or cranberry allowed the dentin collagen cross-linking that preserved the 3D collagen network leading to the maintenance of the strength of the remnant tooth structure. However, the contaminated smear layer could not be removed by using only GSE or cranberry. Cranberry extracts and GSE revealed a significant antimicrobial activity in endodontic disinfection without changing the mechanical properties of the remnant dentin tissues. Furthermore, those components can be associated with traditional compounds to enhance their antimicrobial effects and eliminate the smear layer.


Subject(s)
Anti-Infective Agents , Dental Caries , Grape Seed Extract , Proanthocyanidins , Vaccinium macrocarpon , Vitis , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Vaccinium macrocarpon/chemistry , Dental Pulp Cavity , Disinfection , Grape Seed Extract/pharmacology , Grape Seed Extract/chemistry , Anti-Infective Agents/pharmacology , Collagen , Anti-Bacterial Agents/pharmacology , Seeds
13.
J Agric Food Chem ; 70(49): 15560-15569, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36455288

ABSTRACT

Collagens in the human skin are susceptible to glycation due to their long half-life of about 15 years, accumulating advanced glycation end products (AGEs). The formation of AGEs and the subsequent AGE-induced collagen crosslinking are major factors for skin aging. The objective of this study was to determine the capacity of cranberry juice polyphenols (CJPs) and their fractions to inhibit collagen glycation and to break AGE-induced crosslinks in collagens. Concentrated cranberry juice was extracted to obtain the CJP, which was further fractionated into an ethyl acetate fraction, water fraction, 30% methanol (MeOH) fraction, 60% MeOH fraction, MeOH fraction, and acetone fraction. CJPs and their fractions contained different ratios of anthocyanins, procyanidins, and flavonols. All the fractions significantly inhibited collagen glycation assessed with the collagen-methylglyoxal (MGO) or collagen-dehydroascorbic acid (DHAA) assays. The ethyl acetate fraction and 60% MeOH had the lowest IC50 values in the collagen-MGO and collagen-DHAA assays. The methanol fraction (IC50 = 0.52 µg/mL) and acetone fraction (IC50 = 0.019 mg/mL) had the lowest IC50 values in the inhibition and breakage of AGE-induced collagen crosslinking, respectively. The ethyl acetate fraction significantly scavenged the highest amount of MGO and DHAA after incubation compared to the other fractions. Results suggested that procyanidins were the most effective antiglycation agent in both collagen glycation assays, followed by flavonols and anthocyanins. High-performance liquid chromatography-electrospray ionization─tandem mass spectrometry showed that the reactions of DHAA with quercetin or epicatechin formed several adducts with unreported proposed structures. This study suggested that CJPs may be used as active ingredients in cosmetics to prevent skin collagen glycation and crosslinking and to break the formed crosslinks.


Subject(s)
Proanthocyanidins , Vaccinium macrocarpon , Humans , Proanthocyanidins/pharmacology , Polyphenols , Vaccinium macrocarpon/chemistry , Glycation End Products, Advanced/chemistry , Anthocyanins , Methanol , Acetone , Magnesium Oxide , Pyruvaldehyde/chemistry , Collagen/chemistry , Flavonols
14.
Food Res Int ; 161: 111803, 2022 11.
Article in English | MEDLINE | ID: mdl-36192948

ABSTRACT

Berry phenolics are considered as phytochemicals, which might mitigate development of degenerative diseases, including cancer. Many studies demonstrated their antiproliferative effects in various cancer cell lines while the studies with real foods are rather scarce. We report antiproliferative properties of unique extracts, which were obtained from the defatted by supercritical CO2 cranberry (CrE) and black chokeberry (ChoE) pomace using pressurized ethanol, and global antioxidant response of meat products enriched with berry polyphenolics during in vitro digestion. ChoE was more effective against HCT116 and DLD1 cells than CrE, while the HCT116 cells were more sensitive to digested meat samples than DLD1. At 1000 µL ChoE reduced cell viability to 51% (HCT116) and ∼50% (DLD1), while in case of CrE >69% of HCT116 cells remained viable. The extracts added at 2% increased antioxidant capacity values of hamburgers and cooked ham at oral and gastric digestion phases; however, at intestinal phase no regular effects were observed. The highest antioxidant potential was determined in hamburgers/cooked ham with 2% of CrE (TPC: 1.45/2.01 mg GAE/mL; ABTS●+: 9.82/15.66 mg TE/mL; ORAC: 13.58/12.08 mg TE/mL). The content of quantifiable anthocyanins remarkably decreased in the digesta at all phases and particularly at intestine phase: >99% with CrE and 97-99% with ChoE. Digested liquids of cooked ham prepared with extracts significantly stronger inhibited HCT116 cells at selected dilution factors. The results obtained provide preliminary information that cranberry and black chokeberry pomace extracts may provide health benefits when added in meat products.


Subject(s)
Colorectal Neoplasms , Meat Products , Photinia , Vaccinium macrocarpon , Anthocyanins/analysis , Anthocyanins/pharmacology , Antioxidants/analysis , Carbon Dioxide/analysis , Digestion , Ethanol/analysis , Fruit/chemistry , Plant Extracts/chemistry , Vaccinium macrocarpon/chemistry
15.
Ultrason Sonochem ; 89: 106117, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35964529

ABSTRACT

Combined vacuum impregnation and ultrasound was proposed as an alternative method to improve the infusion of ascorbic acid in berry fruit. The effect of ultrasound application at different stages of impregnation - vacuum, relaxation, and both stages - on the qualitative characteristics of impregnated cranberries was investigated. The quality assessment was based on porosity, color, antioxidant capacity, anthocyanin, polyphenol and structure compound content. Ultrasound-assisted vacuum impregnation contributed to higher ascorbic acid content, smaller relative color difference, and greater antioxidant properties. It was found that the degree of impregnation varies considerably and depends on the stage of using ultrasound. Due to more favorable quality attributes, the conclusion was reached that ultrasound should be applied during the relaxation stage of vacuum impregnation.


Subject(s)
Vaccinium macrocarpon , Anthocyanins/analysis , Antioxidants/analysis , Ascorbic Acid/analysis , Fruit/chemistry , Polyphenols/analysis , Vaccinium macrocarpon/chemistry , Vacuum
16.
PLoS One ; 17(3): e0264966, 2022.
Article in English | MEDLINE | ID: mdl-35255111

ABSTRACT

Cranberry (Vaccinium macrocarpon) is a member of the Heath family (Ericaceae) and is a temperate low-growing woody perennial native to North America that is both economically important and has significant health benefits. While some native varieties are still grown today, breeding programs over the past 50 years have made significant contributions to improving disease resistance, fruit quality and yield. An initial genome sequence of an inbred line of the wild selection 'Ben Lear,' which is parent to multiple breeding programs, provided insight into the gene repertoire as well as a platform for molecular breeding. Recent breeding efforts have focused on leveraging the circumboreal V. oxycoccos, which forms interspecific hybrids with V. macrocarpon, offering to bring in novel fruit chemistry and other desirable traits. Here we present an updated, chromosome-resolved V. macrocarpon reference genome, and compare it to a high-quality draft genome of V. oxycoccos. Leveraging the chromosome resolved cranberry reference genome, we confirmed that the Ericaceae has undergone two whole genome duplications that are shared with blueberry and rhododendron. Leveraging resequencing data for 'Ben Lear' inbred lines, as well as several wild and elite selections, we identified common regions that are targets of improvement. These same syntenic regions in V. oxycoccos, were identified and represent environmental response and plant architecture genes. These data provide insight into early genomic selection in the domestication of a native North American berry crop.


Subject(s)
Ericaceae , Vaccinium macrocarpon , Domestication , Ericaceae/genetics , Fruit/genetics , Genome, Plant , Plant Breeding , Plant Extracts/analysis , Vaccinium macrocarpon/chemistry , Vaccinium macrocarpon/genetics
17.
J Biomed Mater Res B Appl Biomater ; 110(8): 1876-1886, 2022 08.
Article in English | MEDLINE | ID: mdl-35239252

ABSTRACT

The interaction between A-type interflavan bonds from cranberry proanthocyanidins (PAC) and surface virulence factors of extra-intestinal pathogenic Escherichia coli (ExPEC) was studied. Electrospun nanofibers (ESNF) were fabricated using PAC and polycaprolactone (PCL) solutions and their physical and chemical properties were characterized. The ability of PAC:PCL composite ESNF to interact with and entrap ExPEC strain 5011 (ExPEC-5011) was evaluated in vitro by plate culturing and when formulated as a biofilter and nanocoating. As a biofilter, the PAC:PCL ESNF exhibited a dose-dependent ability to entrap ExPEC-5011. Images from scanning electron and fluorescent microscopies revealed that ESNF sections with higher amounts of PAC led to higher bacterial entrapment. The effectiveness PAC:PCL ESNF to bind ExPEC when applied as a nanocoating was studied using ESNF-coated polyvinyl chloride intermittent catheter. Results indicate that ExPEC-5011 was entrapped well into the PAC:PCL ESNF coating on the catheter. Overall, our results suggest that incorporating the biomolecule PAC in ESNF is a potential means for applications requiring bacterial entrapment, such as biofunctionalization, biofiltration, and surface coating, among others.


Subject(s)
Escherichia coli Infections , Nanofibers , Proanthocyanidins , Vaccinium macrocarpon , Escherichia coli , Fruit/chemistry , Plant Extracts/chemistry , Proanthocyanidins/analysis , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Vaccinium macrocarpon/chemistry
18.
Molecules ; 27(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35056782

ABSTRACT

Phenolic compounds in the fruit of American cranberry (Vaccinium macrocarpon Aiton) determine the antioxidant, anti-inflammatory, anticancer, and other biological effects. The berries are used in the production of medicinal preparations and food supplements, which highlights the importance of qualitative and quantitative analysis of phenolic compounds in cranberry fruit raw material. The aim of our study was to develop and validate an efficient, cost-effective, reproducible, and fast UPLC-DAD methodology for the evaluation of the qualitative and quantitative composition of phenolic compounds in raw material and preparations of American cranberry fruit. During the development of the methodology, chlorogenic acid and the following flavonols were identified in cranberry fruit samples: myricetin-3-galactoside, quercetin-3-galactoside, quercetin-3-glucoside, quercetin-3-α-L-arabinopyranoside, quercetin-3-α-L-arabinofuranoside, quercetin-3-rhamnoside, myricetin, and quercetin. The developed and optimized UPLC-DAD methodology was validated according to the guidelines of the International Council for Harmonization (ICH), evaluating the following parameters: range, specificity, linearity (R2 > 0.999), precision (%RSD < 2%), LOD (0.38-1.01 µg/mL), LOQ (0.54-3.06 µg/mL), and recovery (80-110%). The developed methodology was applied to evaluate the qualitative and quantitative composition of phenolic compounds in fruit samples of cranberry cultivars 'Baifay', 'Bergman', 'Prolific', and 'Searles', as well as 'Bain-MC' and 'BL-12' clones. In the tested samples, the majority (about 70%) of the identified flavonols were quercetin derivatives. The greatest amount of quercetin-3-galactoside (1035.35 ± 4.26 µg/g DW) was found in fruit samples of the 'Searles' cultivar, and the greatest amount of myricetin-3-galactoside (940.06 ± 24.91 µg/g DW) was detected in fruit samples of the 'Woolman' cultivar.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Phenols/analysis , Phenols/chemistry , Spectrophotometry, Ultraviolet/methods , Vaccinium macrocarpon/chemistry , Chlorogenic Acid/analysis , Data Accuracy , Flavonols/analysis , Plant Extracts/analysis , Plant Extracts/chemistry
19.
Molecules ; 26(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34946523

ABSTRACT

Every year, thousands of tons of fruit seeds are discarded as agro-industrial by-products around the world. Fruit seeds are an excellent source of oils, monounsaturated fatty acids, and n-6 and n-3 polyunsaturated essential fatty acids. This study aimed to develop a novel technology for extracting active substances from selected seeds that were obtained after pressing fruit juices. The proposed technology involved sonification with the use of ethyl alcohol at a low extraction temperature. Seeds of four species-blueberry (Vaccinium myrtillus L.), raspberry (Rubus idaeus), cranberry (Vaccinium macrocarpon), and cuckooflower (Cardamine pratensis)-were used for extraction. Following alcohol evaporation under nitrogen, the antioxidant activity, chemical composition, and volatile compounds of the obtained extracts were analyzed using chromatographic methods, including gas chromatography (GC)-mass spectrometry (MS) (GC-MS/MS), and high-performance liquid chromatography-MS. We analyzed physicochemical properties, fatty acid, and volatile compounds composition, sterol and tocochromanol content of blueberry, cranberry, raspberry, and cuckooflower seed oils obtained by sonication. This method is safe and effective, and allows for obtaining valuable oils from the seeds.


Subject(s)
Blueberry Plants/chemistry , Cardamine/chemistry , Fatty Acids/chemistry , Microwaves , Rubus/chemistry , Seeds/chemistry , Vaccinium macrocarpon/chemistry , Volatile Organic Compounds/chemistry , Gas Chromatography-Mass Spectrometry
20.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884521

ABSTRACT

The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.


Subject(s)
Drug Resistance, Multiple, Bacterial/drug effects , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Textiles , Vaccinium macrocarpon/chemistry , Animals , Anti-Bacterial Agents , Anti-Infective Agents , Bacteriophage phi 6/drug effects , COVID-19/prevention & control , Caenorhabditis elegans/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...