Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell ; 186(24): 5290-5307.e26, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37922899

RESUMEN

Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Animales , Humanos , Cromatina , Ensamble y Desensamble de Cromatina , Proteínas Nucleares/metabolismo , Nucleosomas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ratones
2.
J Vis Exp ; (156)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32150168

RESUMEN

Spontaneous intracellular calcium activity can be observed in a variety of cell types and is proposed to play critical roles in a variety of physiological processes. In particular, appropriate regulation of calcium activity patterns during embryogenesis is necessary for many aspects of vertebrate neural development, including proper neural tube closure, synaptogenesis, and neurotransmitter phenotype specification. While the observation that calcium activity patterns can differ in both frequency and amplitude suggests a compelling mechanism by which these fluxes might transmit encoded signals to downstream effectors and regulate gene expression, existing population-level approaches have lacked the precision necessary to further explore this possibility. Furthermore, these approaches limit studies of the role of cell-cell interactions by precluding the ability to assay the state of neuronal determination in the absence of cell-cell contact. Therefore, we have established an experimental workflow that pairs time-lapse calcium imaging of dissociated neuronal explants with a fluorescence in situ hybridization assay, allowing the unambiguous correlation of calcium activity pattern with molecular phenotype on a single-cell level. We were successfully able to use this approach to distinguish and characterize specific calcium activity patterns associated with differentiating neural cells and neural progenitor cells, respectively; beyond this, however, the experimental framework described in this article could be readily adapted to investigate correlations between any time-series activity profile and expression of a gene or genes of interest.


Asunto(s)
Calcio/metabolismo , Hibridación Fluorescente in Situ/métodos , Imagen Molecular/métodos , Neurogénesis , Neuronas/citología , Células Madre/citología , Xenopus laevis/crecimiento & desarrollo , Animales , Neuronas/metabolismo , Células Madre/metabolismo , Xenopus laevis/metabolismo
3.
Mol Cell ; 75(4): 683-699.e7, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31399344

RESUMEN

Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Sirtuinas/metabolismo , Elongación de la Transcripción Genética , Acetilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Eliminación de Gen , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/genética , Sirtuinas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
4.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995769

RESUMEN

Calcium is a ubiquitous signaling molecule that plays a vital role in many physiological processes. Recent work has shown that calcium activity is especially critical in vertebrate neural development. Here, we investigated if calcium activity and neuronal phenotype are correlated only on a population level or on the level of single cells. Using Xenopus primary cell culture in which individual cells can be unambiguously identified and associated with a molecular phenotype, we correlated calcium activity with neuronal phenotype on the single-cell level. This analysis revealed that, at the neural plate stage, a high frequency of low-amplitude spiking activity correlates with an excitatory, glutamatergic phenotype, while high-amplitude spiking activity correlates with an inhibitory, GABAergic phenotype. Surprisingly, we also found that high-frequency, low-amplitude spiking activity correlates with neural progenitor cells and that differentiating cells exhibit higher spike amplitude. Additional methods of analysis suggested that differentiating marker tubb2b-expressing cells exhibit relatively persistent and predictable calcium activity compared to the irregular activity of neural progenitor cells. Our study highlights the value of using a range of thresholds for analyzing calcium activity data and underscores the importance of employing multiple methods to characterize the often irregular, complex patterns of calcium activity during early neural development.


Asunto(s)
Calcio/metabolismo , Placa Neural/embriología , Neuronas/metabolismo , Xenopus laevis/embriología , Animales , Calcio/análisis , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Placa Neural/metabolismo , Neuronas/citología , Imagen Óptica , Fenotipo , Análisis de la Célula Individual , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA