Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 106(4-2): 045204, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36397512

RESUMEN

The determination of the ionization of a system in the hot dense regime is a long standing issue. Recent studies have shown inconsistencies between standard predictions using average atom models and evaluations deduced from electronic transport properties computed with quantum molecular dynamics simulations [Bethkenhagen et al., Phys. Rev. Res. 2, 023260 (2020)]2643-156410.1103/PhysRevResearch.2.023260. Here, we propose a definition of the ionization based on its effect on the plasma structure as given by the pair distribution function (PDF), and on the concept of effective one-component plasma (eOCP). We also introduce a definition based on the total pressure and on a modelization of the electronic pressure. We show the equivalence of these definitions on two studies of carbon along the 100 eV isotherm and the 10 g/cm^{3} isochor. Simulations along the 100 eV isotherm are obtained with the newly implemented Ext. First principles molecular dynamics (Fpmd) method in Abinit for densities ranging from 1 to 500 g/cm^{3}and along the 10 g/cm^{3} isochor with the recently published Spectral quadrature DFT (Sqdft) simulations, between 8 and 860 eV. The resulting ionizations are compared to the predictions of the average-atom code Qaam which is based on the muffin-tin approximation. A disagreement between the eOCP and the actual PDFs (non-OCP behavior) is interpreted as the onset of bonding in the system.

2.
Phys Rev E ; 101(3-1): 033207, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32289916

RESUMEN

Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multicomponent systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion, and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, "pseudo-ions in jellium" (PIJ), based on an isoelectronic assumption (iso-n_{e}). With a multicomponent hypernetted-chain integral equation, we verify the quality of the iso-n_{e} prescription for describing the static structure of the mixtures. This semianalytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.

3.
Phys Rev E ; 100(6-1): 063205, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31962510

RESUMEN

The rapid growth of viscosity driven by temperature increase in turbulent plasmas under compression induces a sudden dissipation of kinetic energy, eventually leading to the relaminarization of the flow [Davidovits and Fisch, Phys. Rev. Lett. 116, 105004 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.105004]. The interdiffusion between species is also greatly enhanced, so that mixing layers appearing at interfaces between different materials are subjected to strong dynamical modifications. The result is a competition between the vanishing turbulent diffusion and the expanding plasma microscopic diffusion. In direct numerical simulations with conditions relevant to inertial confinement fusion, we evidence regimes where compressed spherical mixing layers are quickly diffused during the relaminarization process. Using one and two-point turbulent statistics, we also detail how mixing heterogeneities are smoothed out.

4.
Phys Rev E ; 95(6-1): 063202, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709340

RESUMEN

Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm^{3}, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.

5.
Phys Rev E ; 93(6): 063208, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27415378

RESUMEN

We study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.

6.
Phys Rev Lett ; 116(11): 115003, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27035306

RESUMEN

Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

7.
Phys Rev E ; 94(6-1): 061202, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085351

RESUMEN

We show that the Bayesian inference of recently measured x-ray diffraction spectra from laser-shocked aluminum [L. B. Fletcher et al., Nat. Photon. 9, 274 (2015)10.1038/nphoton.2015.41] with the one-component-plasma (OCP) model performs remarkably well at estimating the ionic density and temperature. This statistical approach requires many evaluations of the OCP static structure factor, which were done using a recently derived analytic fit. The atomic form factor is approximated by an exponential function in the diffraction window of the first peak. The electronic temperature is then estimated from a comparison of this approximated form factor with the electronic structure of an average atom model. Out-of-equilibrium states, with electrons hotter than ions, are diagnosed for the spectra obtained early after the pump, whereas at a late time delay the plasma is at thermal equilibrium. Apart from the present findings, this OCP-based modeling of warm dense matter has an important role to play in the interpretation of x-ray Thomson scattering measurements currently performed at large laser facilities.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25871249

RESUMEN

We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.

9.
Artículo en Inglés | MEDLINE | ID: mdl-25679563

RESUMEN

A recent and unexpected discrepancy between ab initio simulations and the interpretation of a laser shock experiment on aluminum, probed by x-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.

10.
Artículo en Inglés | MEDLINE | ID: mdl-23848620

RESUMEN

The ion-ion coupling parameter Γ is estimated for tungsten along the ρ=40 g/cm(3) isochore corresponding to twice the normal density with temperatures ranging from 10 eV to 5 keV. Using a variety of approaches from a spherical Thomas-Fermi ion to a full three-dimensional orbital-free method, we show that along an isochore the effective ionic coupling parameter is almost constant over a wide range of temperatures (in our case Γ~/=20) due to the competition between rising temperatures and increased ionization. This Γ-plateau effect depends on the chosen density and is well delineated at normal density but almost disappears at five times the normal density. This effect could be used to obtain well-defined and predictable experimental conditions.

11.
Artículo en Inglés | MEDLINE | ID: mdl-24483576

RESUMEN

Extending the well-known Thomas-Fermi Z-scaling laws to the Coulomb coupling parameter, we investigate the stabilization of the ionic coupling in isochoric heating [Clérouin et al., Phys. Rev. E 87, 061101 (2013)]. This stabilization is restricted to a domain in atomic number Z, temperature, and density, including strong limitations on high couplings, that can only be obtained for high-Z elements. Contact is made with recent isochoric heating experiments. The consequences for corresponding states with respect to ionic coupling are also quantified via orbital free molecular dynamics simulations. This opens avenues for future isochoric heating experiments.

12.
J Phys Condens Matter ; 24(45): 455603, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23085991

RESUMEN

We present ab initio simulations of liquid cerium in the framework of the LDA + U formulation. The liquid density has been determined self-consistently by searching for the zero pressure equilibrium state at 1320 K with the same set of parameters (U and J) and occupation matrices as those optimized for the γ phase. We have computed static and transport properties. The liquid produced by the simulations appears more structured than the available measurements. This raises questions regarding the ability of the theory to describe such a complex liquid. Conductivity calculations and temperature dependences are nevertheless in reasonable agreement with data.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 2): 046402, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21230400

RESUMEN

We present experimental results on pressure and resistivity on expanded nickel at a density of 0.1 g/cm3 and temperature of a few eV. These data, corresponding to the warm dense matter regime, are used to benchmark different theoretical approaches. A comparison is presented between fully three-dimensional quantum molecular dynamics (QMD) methods, based on density functional theory, with average atom methods, that are essentially one dimensional. In this regime the evaluation of the thermodynamic properties as well as electrical properties is difficult due to the concurrence of density and thermal effects which directly drive the metal-nonmetal transition. Experimental pressures and resistivities are given in a tabular form with temperatures deduced from QMD simulations.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021135, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19792105

RESUMEN

We present or recall several equilibrium methods that allow one to compute isentropic processes, either during the compression or the release of the material. These methods are applied to compute the isentropic release of a shocked monoatomic liquid at high pressure and temperature. Moreover, equilibrium results of isentropic release are compared to the direct nonequilibrium simulation of the same process. We show that due to the viscosity of the liquid but also to nonequilibrium effects, the release of the system is not strictly isentropic.

15.
Phys Rev Lett ; 102(7): 075002, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19257679

RESUMEN

Ab initio molecular dynamics is used to compute the thermal conductivity of hydrogen at 80 g cm(-3) and temperature up to 800 eV. Pressures and ionic structure are compared with orbital-free calculations. Thermal conductivity is evaluated using the Kubo-Greenwood formula and is compared with models currently used in hydrodynamical simulations of inertial confinement fusion.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 2): 026409, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18352135

RESUMEN

We measured the thermodynamical and transport properties of boron in the warm dense matter regime ( 15000 K

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 2): 016403, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16486284

RESUMEN

It is shown that a modified scheme of density functional theory, using the Thomas-Fermi kinetic energy functional for the electrons, is well suited to perform very-high-temperature molecular dynamics simulations on high-Z elements. As an example, iron on the principal Hugoniot is simulated up to 5 keV and 5 times the normal density, giving an equation of state in agreement with current models. Ionic structure is obtained and is given to an excellent level of precision by the structure of the one-component plasma computed for a coupling parameter corresponding to Thomas-Fermi ionization.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(5 Pt 2): 056412, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12513612

RESUMEN

Experimental measurements and theoretical calculations of the electrical conductivity of aluminum are presented in the strongly coupled partially degenerate regime (rho=0.3 g/cm(3), 5000

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA