Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 106: 107927, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37499436

RESUMEN

Covid-19 has caused massive numbers of infections and fatalities globally. In response, there has been a large-scale experimental and computational research effort to study and develop drugs. Towards this, Deep learning techniques are used for the generation of potential novel drug candidates that are proven to be effective against exploring large molecular search spaces. Recent advances in reinforcement learning in conjunction with generative techniques has proven to be a promising field in the area of drug discovery. In this regard, we propose a generative drug discovery approach using reinforcement techniques for sampling novel molecules that bind to the main protease of SARS-COV2. The generative method reported significant validity scores for the generated novel molecules and captured the underlying features of the training molecules. Further, the model is fine-tuned on existing re-purposed molecules which are active towards specific target proteins based on similarity metrics. Upon fine tuning the model generated 92.71% valid, 93.55% unique, and 100% novel molecules. Unlike previous methods which are dependent on docking procedures, we proposed a deep learning based novel drug target interaction (DTI) model to find the binding affinity between candidate molecules and target protease sequence. Finally, the binding affinity of the generated molecules is predicted against the 3CLPro main protease by using the proposed DTI model. Most of the generated molecules have shown binding affinity scores <100 nM (lower the better), which are significantly better compared to the existing commercial drugs including Remdesevir.


Asunto(s)
COVID-19 , Humanos , ARN Viral , SARS-CoV-2 , Interacciones Farmacológicas , Péptido Hidrolasas
2.
Neural Netw ; 147: 63-71, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34979461

RESUMEN

Neural network architectures are high-performing variable models that can solve many learning tasks. Designing architectures manually require substantial time and also prior knowledge and expertise to develop a high-accuracy model. Most of the architecture search methods are developed over the task of image classification resulting in the building of complex architectures intended for large data inputs such as images. Motivated by the applications of DNA computing in Neural Architecture Search (NAS), we propose NoAS-DS which is specifically built for the architecture search of sequence-based classification tasks. Furthermore, NoAS-DS is applied to the task of predicting binding sites. Unlike other methods that implement only Convolution layers, NoAS-DS, specifically combines Convolution and LSTM layers that helps in the process of automatic architecture building. This hybrid approach helped in achieving high accuracy results on TFBS and RBP datasets which outperformed other models in TF-DNA binding prediction tasks. The best architectures generated by the proposed model can be applied to other DNA datasets of similar nature using transfer learning technique that demonstrates its generalization capability. This greatly reduces the effort required to build new architectures for other prediction tasks.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , ADN/genética , Recolección de Datos , Generalización Psicológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA