Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Prog ; : e3459, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553839

RESUMEN

Advances in manufacturing technology coupled with the increased potency of new biotherapeutic modalities have created an external environment where continuous manufacturing (CM) can address a growing need. Amgen has successfully implemented a hybrid CM process for a commercial lifecycle program. In this process, the bioreactor, harvest, capture column, and viral inactivation/depth filtration unit operations were integrated together in an automated, continuous module, while the remaining downstream unit operations took place in stand-alone batch mode. CM operations are particularly suited for so-called "high mix, low volume" manufacturing plants, where a variety of molecules are manufactured in relatively low volumes. The selected molecule fit this mold and was manufactured in a low-capital micro-footprint suite attached to an existing therapeutic production facility. Use of a hybrid process within an already operating facility required less capital and minimized complexity. To enable this hybrid CM process, an established fed-batch process was converted to a perfusion process with continuous harvest. Development efforts included both process changes and the generation of a novel cell line adapted to long-term perfusion. Chromatography resins were updated, and purification processes adapted to handle variable inputs due to the fluctuations in harvest titer from the lengthy production process. A novel automated single-use (SU) viral inactivation (VI) skid was introduced, which entailed the development of a robust pH verification and alarm system, along with procedures for product isolation to allow discard of specific cycles. The CM process demonstrated consistent performance, meaning it met predefined performance criteria (including product quality attributes, or PQAs) when operated within established process parameters and manufactured according to applicable procedures. Using a 75% reduction in scale, it resulted in a five-fold reduction in process media and buffer usage, a fifteen-fold increase in mass per thaw, and an overall process productivity increase of 45-fold (as measured by grams drug substance per liter per day.) The hybrid CM process also enabled increased material demand to be met with no change in cost of goods manufactured or plant capacity, due to the repurposing of existing facility space and the flexible duration of the hybrid CM harvest. Overall, the success of the hybrid CM platform represents an exciting opportunity to reduce costs and increase process efficiency in industry.

2.
Process Biochem ; 129: 241-256, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37013198

RESUMEN

One of the outcomes from the global COVID-19 pandemic caused by SARS-CoV-2 has been an acceleration of development timelines to provide treatments in a timely manner. For example, it has recently been demonstrated that the development of monoclonal antibody therapeutics from vector construction to IND submission can be achieved in five to six months rather than the traditional ten-to-twelve-month timeline using CHO cells [1], [2]. This timeline is predicated on leveraging existing, robust platforms for upstream and downstream processes, analytical methods, and formulation. These platforms also reduce; the requirement for ancillary studies such as cell line stability, or long-term product stability studies. Timeline duration was further reduced by employing a transient cell line for early material supply and using a stable cell pool to manufacture toxicology study materials. The development of non-antibody biologics utilizing traditional biomanufacturing processes in CHO cells within a similar timeline presents additional challenges, such as the lack of platform processes and additional analytical assay development. In this manuscript, we describe the rapid development of a robust and reproducible process for a two-component self-assembling protein nanoparticle vaccine for SARS-CoV-2. Our work has demonstrated a successful academia-industry partnership model that responded to the COVID-19 global pandemic quickly and efficiently and could improve our preparedness for future pandemic threats.

3.
Biotechnol Prog ; 39(2): e3307, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36282232

RESUMEN

For mammalian cell-derived recombinant biotherapeutics, controlling host cell DNA levels below a threshold is a regulatory requirement to ensure patient safety. DNA removal during drug substance manufacture is accomplished by a series of chromatography-based purification steps and a qPCR-based analytical method is most used to measure DNA content in the purified drug substance to enable material disposition. While the qPCR approach is mature and its application to DNA measurement is widespread in the industry, it is susceptible to trace levels of process-related contaminants that are carried forward. In this study, we observed failures in spike recovery studies that are an integral component of the qPCR-based DNA testing, suggesting the presence of an inhibitory compound in the sample matrix. We generated hypotheses around the origin of the inhibitory compound and generated multiple sample matrices and deployed a suite of analytical techniques including Raman and NMR spectroscopy to determine the origin and identity of the inhibitory compound. The caustic wash step and depth filter extractables were ruled out as root causes after extensive experimentation and DNA testing. Subsequently, 2-(N-morpholino)ethanesulfonic acid (MES), a buffer used in the chromatography unit operations, was identified as the source of the contaminant. A 500-fold concentration followed by Raman and NMR spectroscopy analysis revealed the identity of the inhibitory compound as polyvinyl sulfone (PVS), an impurity that originates in the MES manufacturing process. We have implemented PVS concentration controls for incoming MES raw material, and our work highlights the need for rigor in raw material qualification and control.


Asunto(s)
Cromatografía , ADN , Animales , Humanos , Espectroscopía de Resonancia Magnética/métodos , ADN/genética , Mamíferos
4.
Biotechnol J ; 15(2): e1900289, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31841273

RESUMEN

Mammalian cell banks for biopharmaceutical production are usually derived from a single progenitor cell. Different methods to estimate the probability that the cell banks are clonally derived, or the probability of clonality (PoC), associated with various cloning workflows have been reported previously. In this review, a systematic analysis and comparison of the methods used to calculate the PoC are provided. As the single cell deposition and high-resolution imaging technologies continue to advance and the cloning workflow evolves, an aligned understanding and best practice on estimating the PoC is necessary to compare different cloning workflows adopted across the biopharmaceutical industry and it will help to accelerate regulatory acceptance.


Asunto(s)
Productos Biológicos/metabolismo , Clonación de Organismos , Animales , Línea Celular , Células Clonales , Industria Farmacéutica , Humanos , Mamíferos
5.
Biotechnol Prog ; 33(6): 1476-1482, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29055113

RESUMEN

Cell cloning and subsequent process development activities are on the critical path directly impacting the timeline for advancement of next generation therapies to patients with unmet medical needs. The use of stable cell pools for early stage material generation and process development activities is an enabling technology to reduce timelines. To successfully use stable pools during development, it is important that bioprocess performance and requisite product quality attributes be comparable to those observed from clonally derived cell lines. To better understand the relationship between pool and clone derived cell lines, we compared data across recent first in human (FIH) programs at Amgen including both mAb and Fc-fusion modalities. We compared expression and phenotypic stability, bioprocess performance, and product quality attributes between material derived from stable pools and clonally derived cells. Overall, our results indicated the feasibility of matching bioprocess performance and product quality attributes between stable pools and subsequently derived clones. These findings support the use of stable pools to accelerate the advancement of novel biologics to the clinic. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1476-1482, 2017.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Productos Biológicos/inmunología , Biotecnología , Células CHO/efectos de los fármacos , Animales , Anticuerpos Monoclonales/uso terapéutico , Productos Biológicos/uso terapéutico , Células CHO/inmunología , Cricetinae , Cricetulus , Humanos
6.
Biotechnol Bioeng ; 110(7): 1964-72, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23334838

RESUMEN

Increasingly high cell density, high product titer cell cultures containing mammalian cells are being used for the production of recombinant proteins. These high productivity cultures are placing a larger burden on traditional downstream clarification and purification operations due to higher product and impurity levels. Controlled flocculation and precipitation of mammalian cell culture suspensions by acidification or using polymeric flocculants have been employed to enhance clarification throughput and downstream filtration operations. While flocculation is quite effective in agglomerating cell debris and process related impurities such as (host cell) proteins and DNA, the resulting suspension is generally not easily separable solely using conventional depth filtration techniques. As a result, centrifugation is often used for clarification of cells and cell debris before filtration, which can limit process configurations and flexibility due to the investment and fixed nature of a centrifuge. To address this challenge, novel depth filter designs were designed which results in improved primary and secondary direct depth filtration of flocculated high cell density mammalian cell cultures systems feeds, thereby providing single-use clarification solution. A framework is presented here for optimizing the particle size distribution of the mammalian cell culture systems with the pore size distribution of the gradient depth filter using various pre-treatment conditions resulting in increased depth filter media utilization and improved clarification capacity. Feed conditions were optimized either by acidification or by polymer flocculation which resulted in the increased average feed particle-size and improvements in throughput with improved depth filters for several mammalian systems.


Asunto(s)
Biotecnología/métodos , Filtración/métodos , Proteínas Recombinantes/aislamiento & purificación , Animales , Células CHO , Agregación Celular , Recuento de Células , Técnicas de Cultivo de Célula , Cricetulus
7.
J Chromatogr A ; 1218(32): 5386-92, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21511263

RESUMEN

A novel anion exchange membrane adsorber is presented which shows excellent impurity removal under different buffer conductivities ranging from 2 to 2 7mS/cm. The membrane utilizes a primary amine ligand (polyallylamine) and was designed specifically to bind impurities at high salt concentrations. Studies with DNA, endotoxin, and virus spiked into buffer at varying salt conditions were done, resulting in clearance of >3, 4, and 4 LRV, respectively, with negligible change on increasing salt up to 27 mS/cm conductivities. Verification of virus removal in mAb feedstocks is also shown. The data are compared with other membrane adsorbers and a conventional resin which utilize traditional chemistries to demonstrate improved purification performance with the primary amine ligand. Additional data on scale-up of the membrane adsorber device is discussed. A stacked flat-sheet design was implemented to ensure linear scale-up of performance using bovine serum albumin (BSA) as a model. The linearly scalable device, coupled with the highly effective membrane for virus, DNA, and endotoxin removal, represents a step forward in polishing technology for the purification of monoclonal antibodies and recombinant proteins.


Asunto(s)
Aminas/química , Cromatografía por Intercambio Iónico/métodos , Adsorción , Animales , Bovinos , Cromatografía por Intercambio Iónico/instrumentación , ADN/química , ADN/aislamiento & purificación , Endotoxinas/química , Endotoxinas/aislamiento & purificación , Humanos , Membranas Artificiales , Proteínas/química , Proteínas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/aislamiento & purificación , Virus/química , Virus/aislamiento & purificación
8.
J Chromatogr A ; 1155(1): 74-84, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17477929

RESUMEN

Agarose-based anion-exchangers (e.g. quaternary amine, Q) have been widely used in monoclonal antibody flow-through purification to remove trace levels of impurities. Such media are often packed in a large column and the operation is usually robust but with limited throughput due to the compressibility of agarose and consequentially low bed permeability. In order to address this limitation, cored Q beads consisting of a rigid core and a thin agarose gel coating were developed and evaluated for protein flow-through chromatography. Using laboratory-scale columns it was found that, the cored beads indeed provide significantly enhanced rigidity and flow permeability relative to conventional homogeneous agarose resins. Depending on the structure and size of the cored beads, the permeability was 2-4-fold higher than that of a commonly used commercial agarose resin. Good virus and host cell protein clearance was achieved with the cored Q beads even at increased flow velocities. In addition, the impermeable core allows for more efficient use of buffers without loss of useful capacity in polishing applications. Process analyses based upon the experimental data demonstrated that the enhanced permeability achieved with the cored beads can significantly improve process throughput and economics.


Asunto(s)
Anticuerpos Monoclonales/química , Cromatografía por Intercambio Iónico/instrumentación , Cromatografía por Intercambio Iónico/métodos , Animales , Resinas de Intercambio Aniónico/química , Células CHO , Cricetinae , Cricetulus , Tamaño de la Partícula , Permeabilidad , Proteínas/química , Proteínas/aislamiento & purificación , Sefarosa/química , Virus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...