Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 5(7): 9818-9828, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35937588

RESUMEN

Nanostructured organic templates originating from self-assembled block copolymers (BCPs) can be converted into inorganic nanostructures by sequential infiltration synthesis (SIS). This capability is particularly relevant within the framework of advanced lithographic applications because of the exploitation of the BCP-based nanostructures as hard masks. In this work, Al2O3 dot and antidot arrays were synthesized by sequential infiltration of trimethylaluminum and water precursors into perpendicularly oriented cylinder-forming poly(styrene-block-methyl methacrylate) (PS-b-PMMA) BCP thin films. The mechanism governing the effective incorporation of Al2O3 into the PMMA component of the BCP thin films was investigated evaluating the evolution of the lateral and vertical dimensions of Al2O3 dot and antidot arrays as a function of the SIS cycle number. The not-reactive PS component and the PS/PMMA interface in self-assembled PS-b-PMMA thin films result in additional paths for diffusion and supplementary surfaces for sorption of precursor molecules, respectively. Thus, the mass uptake of Al2O3 into the PMMA block of self-assembled PS-b-PMMA thin films is higher than that in pure PMMA thin films.

2.
Nanomaterials (Basel) ; 10(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297348

RESUMEN

This work reports a novel, simple, and resist-free chemo-epitaxy process permitting the directed self-assembly (DSA) of lamella polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymers (BCPs) on a 300 mm wafer. 193i lithography is used to manufacture topographical guiding silicon oxide line/space patterns. The critical dimension (CD) of the silicon oxide line obtained can be easily trimmed by means of wet or dry etching: it allows a good control of the CD that permits finely tuning the guideline and the background dimensions. The chemical pattern that permits the DSA of the BCP is formed by a polystyrene (PS) guide and brush layers obtained with the grafting of the neutral layer polystyrene-random-polymethylmethacrylate (PS-r-PMMA). Moreover, data regarding the line edge roughness (LER) and line width roughness (LWR) are discussed with reference to the literature and to the stringent requirements of semiconductor technology.

3.
ACS Appl Mater Interfaces ; 12(32): 36799-36809, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32678567

RESUMEN

Desoxyribonucleic acid (DNA) origami architectures are a promising tool for ultimate lithography because of their ability to generate nanostructures with a minimum feature size down to 2 nm. In this paper, we developed a method for silicon (Si) nanopatterning to face up current limitations for high-resolution patterning with standard microelectronic processes. For the first time, a 2 nm-thick 2D DNA origami mask, with specific design composed of three different square holes (with a size of 10 and 20 nm), is used for positive pattern transfer into a Si substrate using a 15 nm-thick silicon dioxide (SiO2) layer as an intermediate hard mask. First, the origami mask is transferred onto the SiO2 underlayer, by an HF vapor-etching process. Then, the Si underlayer is etched using an HBr/O2 plasma. Each hole is transferred in the SiO2 layer and the 20 nm-sized holes are transferred into the final stack (Si). The resulting patterns exhibited a lateral resolution in the range of 20 nm and a depth of 40 nm. Patterns are fully characterized by atomic force microscopy, scanning electron microscopy, focused ion beam-transmission electron microscopy, and ellipsometry measurements.


Asunto(s)
ADN/química , Nanoestructuras/química , Dióxido de Silicio/química , Silicio/química , Adsorción , Ácido Bromhídrico/química , Ácido Fluorhídrico/química , Nanotecnología , Oxígeno/química , Gases em Plasma , Impresión , Propiedades de Superficie
4.
Nanomaterials (Basel) ; 10(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290062

RESUMEN

This contribution explores different strategies to electrically contact vertical pillars with diameters less than 100 nm. Two process strategies have been defined, the first based on Atomic Force Microscope (AFM) indentation and the second based on planarization and reactive ion etching (RIE). We have demonstrated that both proposals provide suitable contacts. The results help to conclude that the most feasible strategy to be implementable is the one using planarization and reactive ion etching since it is more suitable for parallel and/or high-volume manufacturing processing.

5.
Artículo en Inglés | MEDLINE | ID: mdl-33033414

RESUMEN

The directed self-assembly (DSA) of block copolymers (BCPs) is a promising low-cost approach to patterning structures with critical dimensions (CDs) which are smaller than can be achieved by traditional photolithography. The CD of contact holes can be reduced by assembling a cylindrical BCP inside a patterned template and utilizing the native size of the cylinder to dictate the reduced dimensions of the hole. This is a particularly promising application of the DSA technique, but in order for this technology to be realized there is a need for three-dimensional metrology of the internal structure of the patterned BCP in order to understand how template properties and processing conditions impact BCP assembly. This is a particularly challenging problem for traditional metrologies owing to the three-dimensional nature of the structure and the buried features. By utilizing small-angle X-ray scattering and changing the angle between the incident beam and sample we can reconstruct the three-dimensional shape profile of the empty template and the residual polymer after self-assembly and removal of one of the phases. A two-dimensional square grid pattern of the holes results in scattering in both in-plane directions, which is simplified by converting to a radial geometry. The shape is then determined by simulating the scattering from a model and iterating that model until the simulated and experimental scattering profiles show a satisfactory match. Samples with two different processing conditions are characterized in order to demonstrate the ability of the technique to evaluate critical features such as residual layer thickness and sidewall height. It was found that the samples had residual layer thicknesses of 15.9 ± 3.2 nm and 4.5 ± 2.2 nm, which were clearly distinguished between the two different DSA processes and in good agreement with focused ion beam scanning transmission electron microscopy (FIBSTEM) observations. The advantage of the X-ray measurements is that FIBSTEM characterizes around ten holes, while there are of the order of 800 000 holes illuminated by the X-ray beam.

6.
Nanoscale ; 10(23): 10900-10910, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29850715

RESUMEN

Advanced surface affinity control for grapho-epitaxy directed self-assembly (DSA) patterning is essential for providing reliable DSA-based solutions for the development of semiconductor patterning. Independent control of surface affinity between the bottom and the sidewalls of a topographical guiding structure was achieved by embedding an ultrathin layer in the guiding template stack. The implementation of an embedded layer with tunable surface properties for DSA grapho-epitaxy was evaluated and optimized on 300 mm wafers by critical dimension SEM characterization. It was demonstrated that a thin protective layer, placed between the hard mask guiding template and the embedded layer, allows the preservation of the surface properties of the embedded layer during guiding template etching. The DSA performances of this novel grapho-epitaxy integration, using a topographical template patterned with 193 nm immersion lithography, were evaluated by monitoring the success rate and the critical dimension uniformity of the shrunk contacts. FIB-STEM analyses were further carried out to analyze the residual polymer thickness on the resulting contacts. This new integration leads to the control of the polymer residual thickness (a few nanometers) and uniformity (inferior to 1 nm) at the bottom of the guiding template which will facilitate the subsequent DSA pattern transfer.

7.
Small ; 13(33)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28677894

RESUMEN

Metallic conductive nanowires (NWs) with DNA bundle core are achieved, thanks to an original process relying on double-stranded DNA alignment and physical vapor deposition (PVD) metallization steps involving a silicon substrate. First, bundles of DNA are suspended with a repeatable process between 2 µm high parallel electrodes with separating gaps ranging from 800 nm to 2 µm. The process consists in the drop deposition of a DNA lambda-phage solution on the electrodes followed by a naturally evaporation step. The deposition process is controlled by the DNA concentration within the buffer solution, the drop volume, and the electrode hydrophobicity. The suspended bundles are finally metallized with various thicknesses of titanium and gold by a PVD e-beam evaporation process. The achieved NWs have a width ranging from a few nanometers up to 100 nm. The electrical behavior of the achieved 60 and 80 nm width metallic NWs is shown to be Ohmic and their intrinsic resistance is estimated according to different geometrical models of the NW section area. For the 80 nm width NWs, a resistance of about few ohms is established, opening exploration fields for applications in microelectronics.


Asunto(s)
ADN/química , Conductividad Eléctrica , Metales/química , Nanocables/química , ADN/ultraestructura , Electrodos , Oro/química , Microscopía de Fuerza Atómica , Nanocables/ultraestructura , Titanio/química
8.
ACS Nano ; 10(7): 6458-63, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27281227

RESUMEN

DNA nanotechnology is currently widely explored and especially shows promises for advanced lithography due to its ability to define nanometer scale features. We demonstrate a 9 × 14 nm(2) hole pattern transfer from DNA origami into an SiO2 layer with a sub-10-nm resolution using anhydrous HF vapor in a semiconductor etching machine. We show that the resulting SiO2 pattern inherits its shape from the DNA structure within a process time ranging from 30 to 60 s at an etching rate of 0.2 nm/s. At 600 s of etching, the SiO2 pattern meets corrosion and the overall etching reaction is blocked. These results, in addition to the entire surface coverage by magnesium occurring on the substrate at a density of 1.1 × 10(15) atom/cm(2), define a process window, fabrication rules, and limits for DNA-based lithography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA