Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
Biomed Environ Sci ; 37(8): 811-822, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39198247

RESUMEN

Objective: Air pollution is a leading public health issue. This study investigated the effect of air quality and pollutants on pulmonary function and inflammation in patients with asthma in Shanghai. Methods: The study monitored 27 asthma outpatients for a year, collecting data on weather, patient self-management [daily asthma diary, peak expiratory flow (PEF) monitoring, medication usage], spirometry and serum markers. To explore the potential mechanisms of any effects, asthmatic mice induced by ovalbumin (OVA) were exposed to PM 2.5. Results: Statistical and correlational analyses revealed that air pollutants have both acute and chronic effects on asthma. Acute exposure showed a correlation between PEF and levels of ozone (O 3) and nitrogen dioxide (NO 2). Chronic exposure indicated that interleukin-5 (IL-5) and interleukin-13 (IL-13) levels correlated with PM 2.5 and PM 10 concentrations. In asthmatic mouse models, exposure to PM 2.5 increased cytokine levels and worsened lung function. Additionally, PM 2.5 exposure inhibited cell proliferation by blocking the NF-κB and ERK phosphorylation pathways. Conclusion: Ambient air pollutants exacerbate asthma by worsening lung function and enhancing Th2-mediated inflammation. Specifically, PM 2.5 significantly contributes to these adverse effects. Further research is needed to elucidate the mechanisms by which PM 2.5 impacts asthma.


Asunto(s)
Contaminantes Atmosféricos , Asma , Pulmón , Asma/inducido químicamente , China , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/toxicidad , Animales , Humanos , Femenino , Masculino , Adulto , Ratones , Persona de Mediana Edad , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Ratones Endogámicos BALB C , Inflamación/inducido químicamente , Material Particulado/toxicidad , Material Particulado/efectos adversos , Citocinas/sangre , Citocinas/metabolismo , Ovalbúmina
2.
Plant Physiol Biochem ; 215: 109011, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128403

RESUMEN

Phosphate deficiency and drought are significant environmental constraints that impact both the productivity and quality of wheat. The interaction between phosphorus and water facilitates their mutual absorption processes in plants. Under conditions of both phosphorus deficiency and drought stress, we observed a significant upregulation in the expression of wheat MYB-CC transcription factors through the transcriptome analysis. 52 TaMYB-CC genes in wheat were identified and analyzed their evolutionary relationships, structures, and expression patterns. The TaMYB-CC5 gene exhibited specific expression in roots and demonstrated significant upregulation under phosphorus deficiency and drought stress compared to other TaMYB-CC genes. The overexpression of TaMYB-CC5A in Arabidopsis resulted in a significant increase of root length under stress conditions, thereby enhancing tolerance to phosphate starvation and drought stress. The wheat lines with silenced TaMYB-CC5 genes exhibited reduced root length under stress conditions and increased sensitivity to phosphate deficiency and drought stress. In addition, silencing the TaMYB-CC5 genes resulted in altered phosphorus content in leaves but did not lead to a reduction in phosphorus content in roots. Enrichment analysis the co-expression genes of TaMYB-CC5 transcription factors, we found the zinc-induced facilitator-like (ZIFL) genes were prominent associated with TaMYB-CC5 gene. The TaZIFL1, TaZIFL2, and TaZIFL5 genes were verified specifically expressed in roots and regulated by TaMYB-CC5 transcript factor. Our study reveals the pivotal role of the TaMYB-CC5 gene in regulating TaZIFL genes, which is crucial for maintaining normal root growth under phosphorus deficiency and drought stress, thereby enhanced resistance to these abiotic stresses in wheat.

4.
J Fungi (Basel) ; 10(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39057384

RESUMEN

Based on phylogenetic analysis, Candolleomyces (Psathyrellaceae, Agaricales) was established with Psathyrella candolleana as the type species. The basidiomes range from small to large and are typically terrestrial, lignicolous, and rarely fimicolous. We analysed the Candolleomyces species collected during five years in China, and based on morphological and molecular data (nrITS, nrLSU, and tef-1α), we propose seven new Candolleomyces species viz. C. brevisporus, C. gyirongicus, C. lignicola, C. luridus, C. shennongdingicus, C. shennongjianus, and C. sichuanicus. Full descriptions, colour photographs, illustrations, phylogenetic analyses results, and comparisons with related Candolleomyces species of the new taxa are provided. This study enriches the species diversity of Candolleomyces in China.

5.
Sci Adv ; 10(27): eadl6428, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959319

RESUMEN

Cyanobacteria use a series of adaptation strategies and a complicated regulatory network to maintain intracellular iron (Fe) homeostasis. Here, a global activator named IutR has been identified through three-dimensional chromosome organization and transcriptome analysis in a model cyanobacterium Synechocystis sp. PCC 6803. Inactivation of all three homologous IutR-encoding genes resulted in an impaired tolerance of Synechocystis to Fe deficiency and loss of the responses of Fe uptake-related genes to Fe-deplete conditions. Protein-promoter interaction assays confirmed the direct binding of IutR with the promoters of genes related to Fe uptake, and chromatin immunoprecipitation sequencing analysis further revealed that in addition to Fe uptake, IutR could regulate many other physiological processes involved in intracellular Fe homeostasis. These results proved that IutR is an important transcriptional activator, which is essential for cyanobacteria to induce Fe-deficiency response genes. This study provides in-depth insights into the complicated Fe-deficient signaling network and the molecular mechanism of cyanobacteria adaptation to Fe-deficient environments.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Homeostasis , Hierro , Regiones Promotoras Genéticas , Synechocystis , Hierro/metabolismo , Synechocystis/metabolismo , Synechocystis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/metabolismo , Cianobacterias/genética , Perfilación de la Expresión Génica
6.
Sci Rep ; 14(1): 16314, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009692

RESUMEN

The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.


Asunto(s)
Glucosa , Grafito , Homeostasis , Rayos Infrarrojos , Condicionamiento Físico Animal , Animales , Ratones , Glucosa/metabolismo , Grafito/farmacología , Grafito/química , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Microbioma Gastrointestinal , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Hipertermia Inducida/métodos , Tolerancia al Ejercicio , Microbiota
7.
Photodiagnosis Photodyn Ther ; 48: 104278, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002832

RESUMEN

BACKGROUND: To investigate the long-term corneal stromal remodeling and central stromal thickness (CST) reduction accuracy after small-incision lenticule extraction (SMILE) for high myopia correction. METHODS: This prospective study included 30 patients (50 eyes) who had undergone SMILE. Measurements of CST reduction using optical coherence tomography were performed at 1 month, 6 months, 1 year, and 3 years after surgery. Correlations were performed between planned and achieved CST reductions. RESULTS: The study enrolled 50 eyes of 30 patients. The mean spherical equivalent was -9.25±1.52 D(diopters). The postoperative CST increased in the first month after surgery and remained stable for a year. Thereafter, it remained stable during follow-up from 1 to 3 years postoperatively. The predicted CST reduction was 146.4 ± 10.3 µm. The achieved CST reductions at 1 month, 6 months, 1 year, and 3 years after surgery were 135.3 ± 12.1 µm, 130.8 ± 10.6 µm, 125.9 ± 9.4 µm, and 122.2 ± 10.6 µm, respectively. An overestimation of CST reduction was observed three years after surgery. Correlation analysis revealed a strong correlation between planned and achieved CST reductions; however, no correlation was found between CST reductions predicted error and the planned CST reductions. CONCLUSION: During long-term follow-up, our findings revealed a significant stromal remodeling following SMILE in patients with high myopia. Therefore, clinicians should consider it when screening patients with high myopia for SMILE.


Asunto(s)
Sustancia Propia , Miopía , Tomografía de Coherencia Óptica , Humanos , Femenino , Masculino , Estudios Prospectivos , Sustancia Propia/cirugía , Sustancia Propia/patología , Adulto , Tomografía de Coherencia Óptica/métodos , Miopía/cirugía , Adulto Joven , Cirugía Laser de Córnea/métodos
8.
Plant Sci ; 346: 112163, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880339

RESUMEN

A20/AN1 zinc-finger domain-containing genes are very promising candidates in improving plant tolerance to abiotic stresses, but considerably less is known about functions and mechanisms for many of them. In this study, Metip3 (5, and 7), cassava (Manihot esculenta) A20/AN1 genes carrying one A20 domain and one AN1 domain, were functionally characterized at different layers. Metip3 (5, and 7) proteins were all located in the nucleus. No interactions were found between these three proteins. Metip3 (5, and 7)-expressing Arabidopsis was more tolerant to multiple abiotic stresses by Na, Cd, Mn, Al, drought, high temperature, and low temperature. Metip3- and Metip5-expressing Arabidopsis was sensitive to Cu stress, while Metip7-expressing Arabidopsis was insensitive. The H2O2 production significantly decreased in all transgenic Arabidopsis, however, O2·- production significantly decreased in Metip3- and Metip5-expressing Arabidopsis but did not significantly changed in Metip7-expressing Arabidopsis under drought. Metip3 (5, and 7) expression-silenced cassava showed the decreased tolerance to drought and NaCl, presented significant decreases in superoxide dismutase and catalase activities and proline content, and displayed a significant increase in malondialdehyde content under drought. Taken together with transcriptome sequencing analysis, it is suggested that Metip5 gene can not only affect signal transduction related to plant hormone, mitogen activated protein kinases, and starch and sucrose metabolism, DRE-binding transcription factors, and antioxidants, conferring the drought tolerance, but also might deliver the signals from DREB2A INTERACTING PROTEIN1, E3 ubiquitin-protein ligases to proteasome, leading to the drought intolerance. The results are informative not only for further study on evolution of A20/AN1 genes but also for development of climate resilient crops.


Asunto(s)
Arabidopsis , Manihot , Proteínas de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Manihot/genética , Manihot/fisiología , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Sequías , Genes de Plantas , Familia de Multigenes
9.
Mol Ther ; 32(7): 2299-2315, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38715364

RESUMEN

Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Células Dendríticas , Inmunidad Mucosa , Lectinas Tipo C , SARS-CoV-2 , Animales , Ratones , Células Dendríticas/inmunología , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Humanos , Femenino , Glicoproteína de la Espiga del Coronavirus/inmunología , Receptores Mitogénicos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Receptores Inmunológicos
10.
ACS Infect Dis ; 10(6): 1980-1989, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38703116

RESUMEN

In this study, we designed and synthesized a series of pleuromutilin derivatives containing thiazole. The in vitro antimicrobial efficacy of these synthesized compounds was examined by using four strains. Compared with tiamulin (MIC = 0.25 µg/mL), compound 14 exhibited potency in inhibiting MRSA growth (MIC = 0.0625 µg/mL) in these derivatives. Meanwhile, the time-killing kinetics further demonstrated that compound 14 could efficiently inhibit the MRSA growth. After exposure at 4 × MIC, the postantibiotic effect (PAE) of compound 14 was 1.29 h. Additionally, in thigh-infected mice, compound 14 exhibited a more potent antibacterial efficacy (-1.78 ± 0.28 log10 CFU/g) in reducing MRSA load compared to tiamulin (-1.21 ± 0.23 log10 CFU/g). Moreover, the MTT assay on RAW 264.7 cells demonstrated that compound 14 (8 µg/mL) had no significant cytotoxicity. Docking studies indicated the strong affinity of compound 14 toward the 50S ribosomal subunit, with a binding free energy of -9.63 kcal/mol. Taken together, it could be deduced that compound 14 was a promising candidate for treating MRSA infections.


Asunto(s)
Antibacterianos , Diterpenos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pleuromutilinas , Compuestos Policíclicos , Infecciones Estafilocócicas , Tiazoles , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/química , Diterpenos/farmacología , Diterpenos/química , Diterpenos/síntesis química , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Infecciones Estafilocócicas/tratamiento farmacológico , Diseño de Fármacos , Células RAW 264.7
11.
Fitoterapia ; 176: 106046, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821322

RESUMEN

14 novel pleuromutilin derivatives were designed and synthesized as inhibitors against Staphylococcus aureus (S. aureus). The modification was focused on the C22 position of pleuromutilin. We conducted the characterization, in vitro and in vivo biological assessment of the compounds. Compound 18 exhibited the best antibacterial effect against MRSA (MIC = 0.015 µg/mL, MBC = 0.125 µg/mL). Compound 18 was further studied by time-kill kinetic and post-antibiotic effect (PAE) approaches. Besides, most compounds exhibited low cytotoxicity to RAW 264.7 cells. Compound 18 displayed decent bactericidal activity in vivo (-0.51 log10 CFU/mL). Molecular docking study indicated that compound 18 could be located stably at the ribosome (ΔGb = -7.30 kcal/mol). The results revealed that compound 18 might be further developed into a novel antibiotic.


Asunto(s)
Antibacterianos , Diterpenos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pleuromutilinas , Compuestos Policíclicos , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Diterpenos/farmacología , Diterpenos/química , Ratones , Animales , Estructura Molecular , Células RAW 264.7 , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Diseño de Fármacos , Staphylococcus aureus/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico
12.
Am J Sports Med ; 52(7): 1707-1718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702986

RESUMEN

BACKGROUND: The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration. HYPOTHESIS: Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR. STUDY DESIGN: Controlled laboratory study. METHODS: BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation. RESULTS: BMSCs labeled with 100 µg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model. CONCLUSION: Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model. CLINICAL RELEVANCE: This study provides an alternative strategy for improving TBI healing after RCR.


Asunto(s)
Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Lesiones del Manguito de los Rotadores , Andamios del Tejido , Cicatrización de Heridas , Animales , Lesiones del Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/terapia , Células Madre Mesenquimatosas/fisiología , Ratas , Masculino , Manguito de los Rotadores/cirugía , Trasplante de Células Madre Mesenquimatosas , Nanopartículas Magnéticas de Óxido de Hierro , Diferenciación Celular , Condrogénesis
14.
Commun Biol ; 7(1): 632, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796563

RESUMEN

The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Ratas Wistar , Receptores de Ghrelina , Caracteres Sexuales , Animales , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Femenino , Ratas , Obesidad/metabolismo , Obesidad/genética , Ghrelina/metabolismo , Termogénesis/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos
15.
Plant Biotechnol J ; 22(8): 2333-2347, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600703

RESUMEN

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.


Asunto(s)
Glycine max , Estrés Fisiológico , Glycine max/genética , Glycine max/fisiología , Glycine max/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Esteroides/metabolismo , Sequías , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 493-498, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660857

RESUMEN

OBJECTIVE: To investigate the relationship between clinical indicators of CRAB symptoms and antioxidant enzyme activity in patients with multiple myeloma (MM). METHODS: The activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in the bone marrow supernatants of 44 patients with MM and 12 patients with non-malignant hematological diseases was detected by colorimetric assay, and then the differences in the activity of antioxidant enzymes between the two groups were compared. Furthermore, the relationship between the activity of antioxidant enzymes in the MM group and the levels of serum calcium, serum creatinine (Scr), hemoglobin (Hb), alkaline phosphatase (ALP) as well as bone lesions were analyzed. RESULTS: The antioxidant enzyme activity was lower in MM patients compared with the control group (P < 0.05). When the concentrations of serum calcium and ALP were higher than the normal levels, Hb was lower than 85 g/L, and there were multiple bone lesions, the activity of CAT, SOD and GPX was significantly declined (P < 0.05); When the concentration of Scr≥177 µmol/L, the activity of GPX was significantly declined (P < 0.05). Regression analyses showed that CAT, SOD and GPX were negatively correlated with serum calcium (r =-0.538, r =-0.456, r =-0.431), Scr (r =-0.342, r =-0.384, r =-0.463), and ALP (r =-0.551, r =-0.572, r =-0.482). CONCLUSION: The activity of antioxidant enzymes, including CAT, SOD and GPX, were decreased in patients with MM and they were negatively correlated with some clinical indicators of CRAB symptoms (such as serum calcium, Scr, and ALP), which suggests that promoting the activity of antioxidant enzymes may be beneficial to treat the CRAB symptoms of the patients with MM.


Asunto(s)
Antioxidantes , Mieloma Múltiple , Humanos , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/metabolismo , Antioxidantes/metabolismo , Médula Ósea , Braquiuros , Calcio/sangre , Calcio/metabolismo , Catalasa/sangre , Catalasa/metabolismo , Creatinina/sangre , Glutatión Peroxidasa/sangre , Glutatión Peroxidasa/metabolismo , Mieloma Múltiple/sangre , Mieloma Múltiple/complicaciones , Mieloma Múltiple/enzimología , Mieloma Múltiple/metabolismo , Superóxido Dismutasa/sangre , Superóxido Dismutasa/metabolismo
18.
J Med Chem ; 67(9): 7033-7047, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38634331

RESUMEN

A brand-new enhanced starvation is put forward to trigger sensitized chemotherapy: blocking tumor-relation blood vessel formation and accelerating nutrient degradation and efflux. Following this concept, two cisplatin-like gemfibrozil-derived Pt(IV) prodrugs, GP and GPG, are synthesized. GP and GPG had nanomolar IC50 against A2780 cells and higher selectivity against normal cells than cisplatin. Bioactivity results confirmed that GP and GPG highly accumulated in cells and induced DNA damage, G2-phase arrest, and p53 expression. Besides, they could increase ROS and MDA levels and reduce mitochondrial membrane potential and Bcl-2 expression to promote cell apoptosis. In vivo, GP showed superior antitumor activity in A2780 tumor-bearing mice with no observable tissue damage. Mechanistic studies suggested that highly selective chemotherapy could be due to the new enhanced starvation effect: blocking vasculature formation via inhibiting the CYP2C8/EETs pathway and VEGFR2, NF-κB, and COX-2 expression and cholesterol efflux and degradation acceleration via increasing ABCA1 and PPARα.


Asunto(s)
Antineoplásicos , Gemfibrozilo , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Gemfibrozilo/farmacología , Ratones Endogámicos BALB C , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Profármacos/farmacología , Profármacos/química , Profármacos/síntesis química
19.
Neurochem Res ; 49(7): 1735-1750, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38530508

RESUMEN

The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1ß, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.


Asunto(s)
Ansiedad , Dieta Alta en Grasa , Microbioma Gastrointestinal , Grafito , Ratones Endogámicos C57BL , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Grafito/uso terapéutico , Grafito/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ansiedad/etiología , Ansiedad/metabolismo , Rayos Infrarrojos/uso terapéutico , Obesidad/metabolismo , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Ratones Obesos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
20.
Int J Biol Sci ; 20(5): 1927-1946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481801

RESUMEN

The activation of NLRP3 inflammasome in microglia is critical for neuroinflammation during postoperative cognitive dysfunction (POCD) induced by sevoflurane. However, the molecular mechanism by which sevoflurane activates the NLRP3 inflammasome in microglia remains unclear. The cGAS-STING pathway is an evolutionarily conserved inflammatory defense mechanism. The role of the cGAS-STING pathway in sevoflurane-induced NLRP3 inflammasome-dependent neuroinflammation and the underlying mechanisms require further investigation. We found that prolonged anesthesia with sevoflurane induced cognitive dysfunction and triggered the neuroinflammation characterized by the activation of NLRP3 inflammasome in vivo. Interestingly, the cGAS-STING pathway was activated in the hippocampus of mice receiving sevoflurane. While the blockade of cGAS with RU.521 attenuated cognitive dysfunction and NLRP3 inflammasome activation in mice. In vitro, we found that sevoflurane treatment significantly activated the cGAS-STING pathway in microglia, while RU.521 pre-treatment robustly inhibited sevoflurane-induced NLRP3 inflammasome activation. Mechanistically, sevoflurane-induced mitochondrial fission in microglia and released mitochondrial DNA (mtDNA) into the cytoplasm, which could be abolished with Mdivi-1. Blocking the mtDNA release via the mPTP-VDAC channel inhibitor attenuated sevoflurane-induced mtDNA cytosolic escape and reduced cGAS-STING pathway activation in microglia, finally inhibiting the NLRP3 inflammasome activation. Therefore, regulating neuroinflammation by targeting the cGAS-STING pathway may provide a novel therapeutic target for POCD.


Asunto(s)
Inflamasomas , Complicaciones Cognitivas Postoperatorias , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ADN Mitocondrial/metabolismo , Sevoflurano , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA