Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Biotechnol Adv ; 72: 108325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38395206

RESUMEN

Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.


Asunto(s)
Aloe , Aloe/química , Aloe/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Food Sci Nutr ; 12(2): 830-842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370038

RESUMEN

Infectious oral diseases are longstanding global public health concerns. However, traditional medical approaches to address these diseases are costly, traumatic, and prone to relapse. Here, we propose a foodborne prophylactic strategy using aloin to safeguard dental collagen. The effect of aloin on the stability of dental collagen was evaluated by treating dentin with a solution containing aloin (0.1 mg/mL) for 2 min. This concentration is comparable to the natural aloin content of edible aloe. Furthermore, we investigated the mechanisms underlying the interactions between aloin and dentin collagen. Our findings, obtained through fluorescence spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, Gaussian peak fitting, circular dichroism spectroscopy, and X-ray diffraction, revealed that aloin interacts with dental collagen through noncovalent bonding, specifically hydrogen bonding in situ. This interaction leads to a reduction in the distance between molecules and an increase in the proportion of stable α-helical chains in the dental collagen. The ultimate tensile strength and thermogravimetric analysis demonstrated that dental collagen treated with aloin exhibited improved mechanical strength and thermostability. Additionally, the release of hydroxyproline, cross-linked carboxy-terminal telopeptide of type I collagen, and C-terminal cross-linked telopeptide of type I collagen, along with weight loss, indicated an enhancement in the enzymatic stability of dental collagen. These findings suggest that aloin administration could be a daily, nondestructive, and cost-effective strategy for managing infectious oral diseases.

3.
Mater Today Bio ; 24: 100901, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38188643

RESUMEN

Hydrogels have been widely used in various biomedical applications, including skin regeneration and tissue repair. However, the capability of certain hydrogels to absorb exudate or blood from surrounding wounds, coupled with the challenge in their long-term storage to prevent bacterial growth, can pose limitations to their efficacy in biological applications. To address these challenges, the development of a multifunctional aloin-arginine-alginate (short for 3A) bio-patch capable of transforming into a hydrogel upon absorbing exudate or blood from neighboring wounds for cutaneous regeneration is proposed. The 3A bio-patch exhibits outstanding features, including an excellent porous structure, swelling properties, and biodegradability. These characteristics allow for the rapid absorption of wound exudates and subsequent transformation into a hydrogel that is suitable for treating skin wounds. Furthermore, the 3A bio-patch exhibits remarkable antibacterial and anti-inflammatory properties, leading to accelerated wound healing and scarless repair in vivo. This study presents a novel approach to the development of cutaneous wound dressing materials.

4.
J Agric Food Chem ; 71(49): 19475-19487, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038700

RESUMEN

Liver fibrosis refers to the excessive buildup of extracellular matrix (ECM) components in liver tissue. It is considered a pathological response to liver damage for which there is no effective treatment. Aloin, an anthraquinone compound isolated from the aloe plant, has shown good pharmacological effects in the treatment of gastric cancer, ulcerative colitis, myocardial hypertrophy, traumatic brain injury, and other diseases; however, its specific impact on liver fibrosis remains unclear. To address this gap, we conducted a study to explore the mechanisms underlying the potential antifibrotic effect of aloin. We constructed a mouse liver fibrosis model using carbon tetrachloride (CCl4) dissolved in olive oil as a modeling drug. Additionally, a cellular model was developed by using transforming growth factor ß1 (TGF-ß1) as a stimulus applied to hepatic stellate cells. After aloin intervention, serum alanine aminotransferase, hepatic hydroxyproline, and serum aspartate aminotransferase were reduced in mice after aloin intervention compared to CCl4-mediated liver injury without aloin intervention. Aloin relieved the oxidative stress caused by CCl4 via reducing hepatic malondialdehyde in liver tissue and increasing the level of superoxide dismutase. Aloin treatment decreased interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α and increased the expression of IL-10, which inhibited the inflammatory response in liver injury. In addition, aloin inhibited the activation of hepatic stellate cells and reduced the level of α-smooth muscle actin (α-SMA) and collagen type I. In cell and animal experiments, aloin attenuated liver fibrosis, acting through the TGF-ß/Smad2/3 signaling pathway, and mitigated CCl4- and TGF-ß1-induced inflammation. Thus, the findings of this study provided theoretical data support and a new possible treatment strategy for liver fibrosis.


Asunto(s)
Proteínas Smad , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Proteínas Smad/farmacología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Hígado/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Estrés Oxidativo , Modelos Animales de Enfermedad , Tetracloruro de Carbono/efectos adversos , Tetracloruro de Carbono/metabolismo , Células Estrelladas Hepáticas
5.
J Clin Lab Anal ; 37(21-22): e24985, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37950500

RESUMEN

BACKGROUND: Aloin has cardioprotective effects, however, its cardioprotective role in sepsis remains unclear. This study aimed to analyze whether aloin could prevent sepsis-related myocardial damage and explore the underlying mechanisms by examining the expression of long-noncoding RNA (lncRNA) SNHG1 and microRNA-21 (miR-21). METHODS: The interaction of SNHG1 with miR-21 was identified by dual-luciferase reporter assay. The levels of SNHG1 and miR-21 were measured by real-time quantitative PCR. The cardioprotective function of aloin was assessed in a sepsis animal model, which was induced by cecal ligation and puncture, and in a myocardial injury cell model in H9C2 cells stimulated by lipopolysaccharide. Myocardial injury biomarker levels and hemodynamic indicators in mice model were measured to evaluate cardiac function. The viability of H9C2 cells was assessed by cell counting kit-8 assay. Inflammatory cytokine levels were examined by an ELISA method. RESULTS: Decreased SNHG1 and increased miR-21 were found in sepsis patients with cardiac dysfunction, and they were negatively correlated. Aloin significantly attenuated myocardial damage and inflammatory responses of mice model, and increased the viability and suppressed inflammation in H9C2 cell model. In addition, SNHG1 expression was upregulated and miR-21 expression was downregulated by aloin in both mice and cell models. Moreover, in mice and cell models, SNHG1/miR-21 axis affected sepsis-related myocardial damage, and mediated the cardioprotective effects of aloin. CONCLUSION: Our findings indicated that aloin exerts protective effects in sepsis-related myocardial damage through regulating cardiac cell viability and inflammatory responses via regulating the SNHG1/miR-21 axis.


Asunto(s)
Emodina , MicroARNs , ARN Largo no Codificante , Sepsis , Animales , Humanos , Ratones , Apoptosis , Supervivencia Celular/genética , Emodina/farmacología , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sepsis/complicaciones , Sepsis/genética
6.
Biomed Pharmacother ; 169: 115911, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38000359

RESUMEN

CPT-11 is one of the drugs employed in colorectal cancer treatment and has faced challenges in the form of resistance. The insulin-like growth factor 1 receptor is a tyrosine kinase receptor that mediates cancer cell survival and drug resistance. It is frequently overexpressed in colorectal cancer and has previously been identified as a microRNA target. MicroRNAs are non-coding RNA molecules that regulate gene function by suppressing messenger RNA translation. Studies have demonstrated that natural compounds can regulate microRNA function and their target genes. Therefore, combining natural compounds with existing cancer drugs can enhance the therapeutic efficacy. We investigated a natural compound, Aloin, for the potential sensitization of colorectal cancer to CPT-11. We used western blot, MTT cell viability assay, flow cytometry, and microRNA/gene knockdown and overexpression experiments, as well as an in vivo mouse model. Our investigation revealed that combining Aloin with CPT-11 exerts an enhanced anti-tumor effect in colorectal cancer. This combination reduced cell viability and induced apoptosis, both in vivo and in vitro. Furthermore, this combination upregulated miRNA-133b, while downregulating the IGF1R and its downstream MEK/ERK, and PI3K/AKT/mTOR pathways. Our findings suggests that CPT-11 and Aloin are potential combination treatment partners against colorectal cancer. MicroRNA-133b may serve as a co-therapeutic target with IGF1R against colorectal cancer, which might overcome the existing treatment limitations.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Animales , Ratones , Irinotecán/farmacología , Irinotecán/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Sistema de Señalización de MAP Quinasas , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , MicroARNs/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Línea Celular Tumoral
7.
Front Pharmacol ; 14: 1218030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781715

RESUMEN

Background: Aloin, as a bioactive compound, has a variety of pharmacological functions, but its effects on combined allergic rhinitis and asthma syndrome (CARAS) have not been studied. To clarify the protective effect and mechanism of aloin in the treatment of CARAS by network pharmacology, molecular dynamics simulation and experiment. Methods: The targets of aloin, allergic rhinitis and asthma were obtained from various databases. The protein interaction network was constructed for the common targets, and molecular docking and molecular dynamics simulations were performed for the core targets. Functional and pathway enrichment analysis of common targets was also performed using R software. Varieties of biological experiments were conducted to verify the effect of aloin on the inflammatory changes of CARAS and its regulatory mechanism. Results: A total of 42 anti-allergic rhinitis and 58 anti-asthma targets were obtained, and 5 core anti-allergic rhinitis and 6 core anti-asthma targets were identified using topological analysis. GO and KEGG analyses showed that endopeptidase activity and MAPK signaling pathway played important roles in allergic rhinitis and asthma. Molecular docking and molecular dynamics simulations showed that aloin could stably bind to the core target proteins. Experimental verification showed that aloin significantly inhibited the expression of inflammatory factors, and may regulate CARAS by down-regulating MAPK signaling related proteins. Conclusion: This study identified the protective effect, potential target and mechanism of aloin on CARAS. It provides reference for understanding the molecular mechanism and clinical application of aloin in the ameliorates of CARAS.

8.
Allergol Immunopathol (Madr) ; 51(4): 10-18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37422775

RESUMEN

BACKGROUND: Asthma is a severe chronic respiratory disease affecting all age groups with increasing prevalence. Anti-inflammatory strategies are promising options for the treatment of asthma. Although the inhibitory effect of aloin on inflammation has been demonstrated in various diseases, its effect on asthma remains unknown. METHODS: A mice asthma model was established by treating with ovalbumin (OVA). The effects and mechanism of aloin on the OVA-treated mice were determined by enzyme-linked--immunosorbent serologic assay, biochemical examination, hematoxylin and eosin and Masson's staining, and Western blot assay. RESULTS: OVA treatment in mice significantly increased the number of total cells, neutrophils, eosinophils, and macrophages and the concentration of interleukin (IL)-4, IL-5, and IL-13, which were attenuated with the administration of aloin. The content of malondialdehyde was enhanced in OVA-treated mice, with the decreased levels of superoxide dismutase and glutathione, which were reversed with aloin treatment. Aloin treatment reduced the airway resistance of OVA-induced mice. The inflammatory cell infiltration around small airways was accompanied by the thickening and contraction of bronchial walls and pulmonary collagen deposition in OVA-treated mice; however, these conditions were ameliorated with aloin treatment. Mechanically, aloin upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase 1 (HO-1) pathway but inhibited the level of transforming growth factor beta-SMAD2/3 genes (TGF-ß/Smad2/3) axis in OVA-induced mice. CONCLUSION: Aloin treatment lessened airway hyperresponsiveness, airway remodeling, inflammation, and oxidative stress in OVA-treated mice, and was closely related to the activation of Nrf2/HO-1 pathway and the weakening of TGF-ß/Smad2/3 pathway.


Asunto(s)
Asma , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Ovalbúmina , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Pulmón , Inflamación/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(5): 702-709, 2023 May 20.
Artículo en Chino | MEDLINE | ID: mdl-37313810

RESUMEN

OBJECTIVE: To investigate the molecular mechanism underlying the inhibitory effect of aloin on the proliferation and migration of gastric cancer cells. METHODS: Human gastric cancer MGC-803 cells treated with 100, 200 and 300 µg/mL aloin were examined for changes in cell viability, proliferation and migration abilities using CCK-8, EdU and Transwell assays. HMGB1 mRNA level in the cells was detected with RT-qPCR, and the protein expressions of HMGB1, cyclin B1, cyclin E1, E-cadherin, MMP-2, MMP-9 and p-STAT3 were determined using Western blotting. JASPAR database was used to predict the binding of STAT3 to HMGB1 promoter. In a BALB/c-Nu mouse model bearing subcutaneous MGC-803 cell xenograft, the effect of intraperitoneal injection of aloin (50 mg/kg) on tumor growth was observed. The protein expressions of HMGB1, cyclin B1, cyclin E1, E-cadherin, MMP-2, MMP-9 and p-STAT3 in the tumor tissue was examined using Western blotting, and tumor metastasis in the liver and lung tissues was detected using HE staining. RESULTS: Treatment with aloin concentration-dependently inhibited the viability of MGC-803 cells (P < 0.05), significantly reduced the number of EdU-positive cells (P < 0.01), and attenuated the migration ability of the cells (P < 0.01). Aloin treatment dose-dependently down-regulated HMGB1 mRNA expression (P < 0.01), lowered the protein expressions of HMGB1, cyclin B1, cyclin E1, MMP-2, MMP-9 and p-STAT3, and up-regulated E-cadherin expression in MGC-803 cells. Prediction based on JASPAR database suggested that STAT3 could bind to the promoter region of HMGB1. In the tumor-bearing mice, aloin treatment significantly reduced the tumor size and weight (P < 0.01), lowered the protein expressions of cyclin B1, cyclin E1, MMP-2, MMP-9, HMGB1 and p-STAT3 and increased the expression of E-cadherin in the tumor tissue (P < 0.01). CONCLUSION: Aloin attenuates the proliferation and migration of gastric cancer cells by inhibiting the STAT3/HMGB1 signaling pathway.


Asunto(s)
Proteína HMGB1 , Neoplasias Gástricas , Humanos , Animales , Ratones , Ciclina B1 , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Transducción de Señal , Proliferación Celular , Factor de Transcripción STAT3
10.
Food Chem Toxicol ; 174: 113628, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36702364

RESUMEN

Aloe has a long history of topical and systemic use with testimonials of countless health benefits and is one of the most popular botanical medicines in the world for the management of a wide variety both of benign and serious ailments including irritable bowel syndromes, osteoarthritis, Type II diabetes mellitus, and viral respiratory illness. The human consumption of Aloe vera extract in beverage form has substantially grown over the last several decades, in no small part, due to the increased consumer interest in alternative approaches to health benefits. The principal aim of the present paper is to characterize the research to date that has explored the genotoxic potential of Aloe vera inner leaf gel extract and decolorized whole leaf extract used in commercially available food-grade drinkable products which contain no more than 10 ppm aloin. Despite prevailing public health opinion, especially in Europe, the consensus of the reviewed studies retrieved from the peer-reviewed literature together with a mutagenic evaluation of an Aloe vera whole leaf decolorized spray-dried powder is that these products are not genotoxic.


Asunto(s)
Aloe , Diabetes Mellitus Tipo 2 , Humanos , Extractos Vegetales/toxicidad , Aloe/toxicidad , Mutágenos , Bebidas
11.
Environ Sci Pollut Res Int ; 30(11): 30062-30072, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36427124

RESUMEN

The effect of aloin on mucosal immune response and disease resistance was elucidated in Labeo rohita infected with the bacterial fish pathogen, Aeromonas hydrophila. Fishes were divided into four groups: (i) control, (ii) vehicle control, (iii) bacteria infected and (iv) bacteria infected and aloin treated. Fish were intraperitoneally injected with A. hydrophila suspension at the dose of 2 × 106 CFU/fish at 0 day (d). Following bacterial injection at 0 d, fish were treated with aloin at a dose of 1 mg/kg body weight intraperitoneally at an interval of 24 h for 4 consecutive days. Mucus collected from fish of each group was analyzed at 2 d, 4 d, 6 d, 8 d and 10 d. In bacteria-infected fish, a significant decrease (P < 0.05) in the activity of certain enzymatic and non-enzymatic immune parameters was observed. The activity of these immune parameters showed a gradual recovery on administration of aloin in bacteria-infected fish. Cumulative mortality was also found to be low in the aloin-treated group as compared to that in the infected group. Thus, aloin could act as an immunostimulant and play a protective role against disease caused by bacteria.


Asunto(s)
Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Resistencia a la Enfermedad , Aeromonas hydrophila , Infecciones por Bacterias Gramnegativas/veterinaria , Enfermedades de los Peces/microbiología
12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-986979

RESUMEN

OBJECTIVE@#To investigate the molecular mechanism underlying the inhibitory effect of aloin on the proliferation and migration of gastric cancer cells.@*METHODS@#Human gastric cancer MGC-803 cells treated with 100, 200 and 300 μg/mL aloin were examined for changes in cell viability, proliferation and migration abilities using CCK-8, EdU and Transwell assays. HMGB1 mRNA level in the cells was detected with RT-qPCR, and the protein expressions of HMGB1, cyclin B1, cyclin E1, E-cadherin, MMP-2, MMP-9 and p-STAT3 were determined using Western blotting. JASPAR database was used to predict the binding of STAT3 to HMGB1 promoter. In a BALB/c-Nu mouse model bearing subcutaneous MGC-803 cell xenograft, the effect of intraperitoneal injection of aloin (50 mg/kg) on tumor growth was observed. The protein expressions of HMGB1, cyclin B1, cyclin E1, E-cadherin, MMP-2, MMP-9 and p-STAT3 in the tumor tissue was examined using Western blotting, and tumor metastasis in the liver and lung tissues was detected using HE staining.@*RESULTS@#Treatment with aloin concentration-dependently inhibited the viability of MGC-803 cells (P < 0.05), significantly reduced the number of EdU-positive cells (P < 0.01), and attenuated the migration ability of the cells (P < 0.01). Aloin treatment dose-dependently down-regulated HMGB1 mRNA expression (P < 0.01), lowered the protein expressions of HMGB1, cyclin B1, cyclin E1, MMP-2, MMP-9 and p-STAT3, and up-regulated E-cadherin expression in MGC-803 cells. Prediction based on JASPAR database suggested that STAT3 could bind to the promoter region of HMGB1. In the tumor-bearing mice, aloin treatment significantly reduced the tumor size and weight (P < 0.01), lowered the protein expressions of cyclin B1, cyclin E1, MMP-2, MMP-9, HMGB1 and p-STAT3 and increased the expression of E-cadherin in the tumor tissue (P < 0.01).@*CONCLUSION@#Aloin attenuates the proliferation and migration of gastric cancer cells by inhibiting the STAT3/HMGB1 signaling pathway.


Asunto(s)
Humanos , Animales , Ratones , Neoplasias Gástricas , Ciclina B1 , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Proteína HMGB1 , Transducción de Señal , Proliferación Celular , Factor de Transcripción STAT3
13.
Chinese Pharmacological Bulletin ; (12): 549-554, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013841

RESUMEN

Aim To investigate the effect of aloin, an aloe extract,on fibrosis of renal tubular epithelial cells (HK-2) induced by TGF-β and the underlying molecular mechanism. Methods The experiment included a control group,TGF-β induced group,TGF-β + Aloin 50 or 100 μmol • L

14.
Aging (Albany NY) ; 15(24): 15557-15577, 2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38180061

RESUMEN

80% of advanced cancer patients suffer from cachexia, but there are no FDA-approved drugs. Therefore, it is imperative to discover potential drugs. OBJECTIVE: This study aims at exploring the effect and targets of Aloin A against cancer cachexia (CC)-induced muscle atrophy. METHODS: Network pharmacology, molecular docking, molecular dynamics (MD) and animal model of CC-induced muscle atrophy with a series of behavior tests, muscle quality, HE staining and RT-PCR were performed to investigate the anticachectic effects and targets of Aloin A and its molecular mechanism. RESULTS: Based on network pharmacology, 51 potential targets of Aloin A on CC-induced muscle atrophy were found, and then 10 hub genes were predicted by the PPI network. Next, KEGG and GO enrichment analysis showed that the anticachectic effect of Aloin A is associated with PI3K-AKT, MAPK, TNF, TLR, etc., pathways, and biological processes like inflammation, apoptosis and cell proliferation. Molecular docking and MD results showed good binding ability between the Aloin A and key targets. Moreover, experiments in vivo demonstrated that Aloin A effectively rescued muscle function and wasting by improving muscle quality, mean CSA, and distribution of muscle fibers by regulating HSP90AA1/AKT signaling in tumor-bearing mice. CONCLUSION: This study offers new insights for researchers to understand the effect and mechanism of Aloin A against CC using network pharmacology, molecular docking, MD and experimental validation, and Aloin A retards CC-induced muscle wasting through multiple targets and pathways, including HSP90AA1/AKT signaling, which provides evidence for Aloin A as a potential therapy for cancer cachexia in clinic.


Asunto(s)
Neoplasias , Farmacología en Red , Humanos , Animales , Ratones , Simulación del Acoplamiento Molecular , Caquexia/tratamiento farmacológico , Caquexia/etiología , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Fibras Musculares Esqueléticas
15.
Allergol. immunopatol ; 51(4): 10-18, 2023. graf
Artículo en Inglés | IBECS | ID: ibc-222630

RESUMEN

Background: Asthma is a severe chronic respiratory disease affecting all age groups with increasing prevalence. Anti-inflammatory strategies are promising options for the treatment of asthma. Although the inhibitory effect of aloin on inflammation has been demonstrated in various diseases, its effect on asthma remains unknown. Methods: A mice asthma model was established by treating with ovalbumin (OVA). The effects and mechanism of aloin on the OVA-treated mice were determined by enzyme-linked--immunosorbent serologic assay, biochemical examination, hematoxylin and eosin and Masson's staining, and Western blot assay. Results: OVA treatment in mice significantly increased the number of total cells, neutrophils, eosinophils, and macrophages and the concentration of interleukin (IL)-4, IL-5, and IL-13, which were attenuated with the administration of aloin. The content of malondialdehyde was enhanced in OVA-treated mice, with the decreased levels of superoxide dismutase and glutathione, which were reversed with aloin treatment. Aloin treatment reduced the airway resistance of OVA-induced mice. The inflammatory cell infiltration around small airways was accompanied by the thickening and contraction of bronchial walls and pulmonary collagen deposition in OVA-treated mice; however, these conditions were ameliorated with aloin treatment. Mechanically, aloin upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)—heme oxygenase 1 (HO-1) pathway but inhibited the level of transforming growth factor beta–SMAD2/3 genes (TGF-β/Smad2/3) axis in OVA-induced mice. Conclusion: Aloin treatment lessened airway hyperresponsiveness, airway remodeling, inflammation, and oxidative stress in OVA-treated mice, and was closely related to the activation of Nrf2/HO-1 pathway and the weakening of TGF-β/Smad2/3 pathway (AU)


Asunto(s)
Humanos , Masculino , Ratones , Asma/tratamiento farmacológico , Factor de Transcripción NF-E2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Emodina/análogos & derivados , Modelos Animales de Enfermedad , Emodina/uso terapéutico , Asma/inducido químicamente
16.
Molecules ; 27(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36364175

RESUMEN

In the present work, a two-dimensional qNMR method for the determination of sennosides was established. Using band-selective HSQC and the cross correlations of the characteristic 10-10' bonds, we quantified the total amount of the value-determining dianthranoids in five minutes, thus, rendering the method not only fast, but also specific and stability indicating. The validation of the method revealed excellent accuracy (recovery rates of 98.5 to 103%), precision (RSD values of 3.1%), and repeatability (2.2%) and demonstrated the potential of 2D qNMR in the quality control of medicinal plants. In a second method, the use of 2D qNMR for the single analysis of sennosides A, B, and A1 was evaluated with acceptable measurement times (31 min), accuracy (93.8%), and repeatability (5.4% and 5.6%) for the two major purgatives sennoside A and B. However, the precision for sennoside B and A1 was not satisfactory, mainly due to the low resolution of the HSQC signals of the two compounds.


Asunto(s)
Extracto de Senna , Senna , Senósidos , Extracto de Senna/química , Senna/química , Catárticos , Comprimidos , Antraquinonas/análisis
17.
Biomed Pharmacother ; 153: 113421, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076485

RESUMEN

In folk medicine, Aloe, a genus of Aloaceae, is constantly developed into laxative drugs or products and skin remedies with tremendous popularity worldwide. However, almost all products of Aloe are in roughly processed form. Therefore, developing related products of the active ingredients derived from Aloe is of great medical value. Aloin is a quality standard compound based on the Chinese Pharmacopoeia (CHP). It has a wide range of pharmacological activities, including anti-tumor, anti-inflammatory, anti-osteoporotic, organ-protective, anti-viral, anti-microbial, anti-parasitic, and laxative potentials. Moreover, it regulates blood lipids and glucose and improves neuropathic pain effects, depicting potential to be transformed into promising medicines and healthcare products. In addition to the functional cosmetics and health products of Aloe, the availability, pharmacological activities, pharmacokinetics, formulation studies, and toxicity of aloin were summarized after investigating the literature from PubMed, Google, and other databases. Moreover, significant attention had been paid to the development of aloin-derived medicines and healthcare products. Thus, the present review clarified the possibility of aloin as medicines and healthcare products to develop and utilize Aloe resources.


Asunto(s)
Aloe , Emodina , Antraquinonas/farmacología , Antiinflamatorios , Antivirales , Atención a la Salud , Emodina/análogos & derivados , Emodina/farmacología , Laxativos
18.
Phytomedicine ; 106: 154403, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36075180

RESUMEN

BACKGROUND: Previous studies reported that Aloe vera ameliorated DSS-induced colitis and promoted mucus secretion. However, the effect of Aloin A (AA), a major compound of Aloe vera, on colitis and its exact mechanism remains uncovered. METHODS: C57BL/6 mice were successively subjected to 3% DSS solution for 5 days and distilled water for 2 days. Concurrently, AA (25, 50 mg/kg) and 5-aminosalicylic (500 mg/kg) were administrated intragastrically from day 1 to day 7. Colitis was evaluated by disease active index (DAI), colon length, inflammation response, and intestinal barrier function. In vitro LS174T cells challenged with 50 ng/ml of lipopolysaccharides (LPS) were used to validate the modulatory action of AA on the Notch signaling pathway. RESULTS: Our results showed that oral administration with AA prominently prevented DSS-induced colitis symptoms in terms of decreased DAI, prevention of colon shortening, and reduced pathological damage. AA mitigated the inflammatory response evidenced by the decreased proinflammatory cytokines (TNF-α, IL-1ß, IL-6) and increased anti-inflammatory cytokine (IL-10). Besides, AA inhibited apoptosis and facilitated proliferation in colons. Moreover, AA treatment up-regulated the expression of tight junction (TJ) proteins (ZO-1, Occludin) and promoted the secretion of MUC2 to decrease colon permeability. Mechanistically, AA inhibited the Notch pathway to promote the secretion of MUC2, which was consistent with LPS-challenged LS174 cells. CONCLUSION: These results suggested that AA could prevent colitis by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. Thus, AA might be a prospective remedy for ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Antiinflamatorios/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/prevención & control , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/prevención & control , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Emodina/análogos & derivados , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ocludina/metabolismo , Estudios Prospectivos , Transducción de Señal , Proteínas de Uniones Estrechas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Agua
19.
Gels ; 8(9)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36135309

RESUMEN

Aloe-vera extracted anthraquinones (aloin, aloe-emodin, rhein) possess a wide range of biological activities, have poor solubility and are sensitive to processing conditions. This work investigated the ultrasound-assisted encapsulation of these extracted anthraquinones (AQ) into casein micelles (CM). The particle size and zeta potential of casein micelles loaded with aloin (CMA), aloe-emodin (CMAE), rhein (CMR) and anthraquinone powder (CMAQ) ranged between 171-179 nm and -23 to -17 mV. The AQ powder had the maximum encapsulation efficiency (EE%) (aloin 99%, aloe-emodin 98% and rhein 100%) and encapsulation yield, while the whole leaf Aloe vera gel (WLAG) had the least encapsulation efficiency. Spray-dried powder (SDP) and freeze-dried powder (FDP) of Aloe vera showed a significant increase in size and zeta potential related to superficial coating instead of encapsulation. The significant variability in size, zeta potential and EE% were related to anthraquinone type, its binding affinity, and its ratio to CM. FTIR spectra confirmed that the structure of the casein micelle remained unchanged with the binding of anthraquinones except in casein micelles loaded with whole-leaf aloe vera gel (CMWLAG), where the structure was deformed. Based on our findings, Aloe vera extracted anthraquinones powder (AQ) possessed the best encapsulation efficiency within casein micelles without affecting its structure. Overall, this study provides new insights into developing new product formulations through better utilization of exceptional properties of casein micelles.

20.
Biomed Chromatogr ; 36(12): e5483, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35975594

RESUMEN

Aloin A/B and aloesin are the major bioactive constituents in Aloe vera, with diverse pharmacological activities, including anti-bacterial, anti-tumour, anti-inflammatory and intestinal regulation. However, the in vivo metabolism of aloin A/B and aloesin is still unclear. In this study, the metabolic processes of aloin A/B and aloesin in rats were investigated using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and MetaboLynx™ software with the mass defect filter technique. Based on the proposed method, the prototype components of three compounds were all detected in rat plasma, urine and feces. Meanwhile, 25 aloin A/B metabolites (six phase I, three phase II, 16 phase I combined with phase II) and three aloesin metabolites (two phase I and one phase II) were detected in rats after oral administration of aloin A, aloin B and aloesin, and the main biotransformation reactions were hydroxylation, oxidation, methylation, acetylation and glucuronidation. In addition, aloin A and aloin B can be transformed into each other in vivo and the metabolic profiles of aloin A and aloin B are identical. These results provide essential data for further pharmaceutical research and clinical application of aloin A/B and aloesin.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...