Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Curr Drug Saf ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39075954

RESUMEN

L-asparaginase (L-ASNase) is an enzyme that shows targeted activity against Acute Lymphoblastic Leukemia (ALL) and similar lymphoid neoplasms by facilitating the breakdown of asparagine into L-aspartic acid, thereby reducing L-asparagine levels in leukemic cells. However, its therapeutic potential is hindered by its associated toxicity, leading to complications, such as thrombosis, hemorrhage, thrombocytopenia, fibrinolysis, hypersensitivity reactions, and the development of Posterior Reversible Encephalopathy Syndrome (PRES). This review compiles documented cases of PRES linked to treating B and T cell acute lymphoblastic leukemia in children using L-ASNase. Although this pathology is rare, understanding its management is crucial within ASNase-based chemotherapy protocols. As PRES lacks a specific treatment, focusing on symptomatic management becomes pivotal. Therefore, comprehending the underlying causes during L-ASNase treatment for acute lymphoblastic leukemia is essential. Understanding the etiology and clinical symptoms of this illness is critical for early diagnosis and treatment. The cases of PRES described in this review include instances in which this syndrome has appeared after the administration of L-ASNase in children. In some cases, PRES developed during induction therapy, while in others, it occurred during the reinduction phase. These cases resolved days after discontinuation of L-ASNase. The findings suggest a close relationship between drug administration and the appearance of brain lesions, as evidenced by the disappearance or decrease of these lesions when the drug was eliminated from the bloodstream.

2.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892196

RESUMEN

Acute lymphoblastic leukaemia is currently treated with bacterial L-asparaginase; however, its side effects raise the need for the development of improved and efficient novel enzymes. Previously, we obtained low anti-asparaginase antibody production and high serum enzyme half-life in mice treated with the P40S/S206C mutant; however, its specific activity was significantly reduced. Thus, our aim was to test single mutants, S206C and P40S, through in vitro and in vivo assays. Our results showed that the drop in specific activity was caused by P40S substitution. In addition, our single mutants were highly stable in biological environment simulation, unlike the double-mutant P40S/S206C. The in vitro cell viability assay demonstrated that mutant enzymes have a higher cytotoxic effect than WT on T-cell-derived ALL and on some solid cancer cell lines. The in vivo assays were performed in mice to identify toxicological effects, to evoke immunological responses and to study the enzymes' pharmacokinetics. From these tests, none of the enzymes was toxic; however, S206C elicited lower physiological changes and immune/allergenic responses. In relation to the pharmacokinetic profile, S206C exhibited twofold higher activity than WT and P40S two hours after injection. In conclusion, we present bioengineered E. coli asparaginases with high specific enzyme activity and fewer side effects.


Asunto(s)
Asparaginasa , Escherichia coli , Animales , Asparaginasa/genética , Asparaginasa/metabolismo , Escherichia coli/genética , Ratones , Humanos , Mutación , Línea Celular Tumoral , Femenino , Supervivencia Celular/efectos de los fármacos , Inflamación/genética
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732010

RESUMEN

L-asparaginase is an essential drug used to treat acute lymphoid leukemia (ALL), a cancer of high prevalence in children. Several adverse reactions associated with L-asparaginase have been observed, mainly caused by immunogenicity and allergenicity. Some strategies have been adopted, such as searching for new microorganisms that produce the enzyme and applying protein engineering. Therefore, this work aimed to elucidate the molecular structure and predict the immunogenic profile of L-asparaginase from Penicillium cerradense, recently revealed as a new fungus of the genus Penicillium and producer of the enzyme, as a motivation to search for alternatives to bacterial L-asparaginase. In the evolutionary relationship, L-asparaginase from P. cerradense closely matches Aspergillus species. Using in silico tools, we characterized the enzyme as a protein fragment of 378 amino acids (39 kDa), including a signal peptide containing 17 amino acids, and the isoelectric point at 5.13. The oligomeric state was predicted to be a homotetramer. Also, this L-asparaginase presented a similar immunogenicity response (T- and B-cell epitopes) compared to Escherichia coli and Dickeya chrysanthemi enzymes. These results suggest a potentially useful L-asparaginase, with insights that can drive strategies to improve enzyme production.


Asunto(s)
Asparaginasa , Simulación por Computador , Penicillium , Asparaginasa/química , Asparaginasa/inmunología , Asparaginasa/metabolismo , Penicillium/inmunología , Penicillium/enzimología , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/metabolismo , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Humanos , Aspergillus/inmunología , Aspergillus/enzimología , Escherichia coli/genética , Dickeya chrysanthemi/enzimología , Dickeya chrysanthemi/inmunología , Modelos Moleculares
4.
Food Res Int ; 186: 114333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729693

RESUMEN

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Asunto(s)
Acrilamida , Asparaginasa , Asparagina , Coffea , Café , Gusto , Acrilamida/análisis , Asparagina/análisis , Coffea/química , Café/química , Humanos , Compuestos Orgánicos Volátiles/análisis , Culinaria/métodos , Alcaloides/análisis , Ácido Clorogénico/análisis , Cafeína/análisis , Masculino , Manipulación de Alimentos/métodos , Reacción de Maillard , Calor , Cromatografía Líquida de Alta Presión , Semillas/química , Femenino
5.
Prep Biochem Biotechnol ; 54(4): 503-513, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37698175

RESUMEN

Thermostability is an important and desired feature of therapeutic proteins and is critical for the success or failure of protein drugs development. It can be increased by PEGylation-binding of poly(ethylene glycol) moieties-or glycosylation-post-translational modification to add glycans. Here, the thermostability and thermodynamic parameters of native, PEGylated, and glycosylated versions of the antileukemic enzyme crisantaspase were investigated. First-order kinetics was found to describe the irreversible deactivation process. Activation energy of the enzyme-catalyzed reaction (E*) was estimated for native, PEGylated, and glycosylated enzyme (10.2, 14.8, and 18.8 kJ mol-1 respectively). Half-life decreased progressively with increasing temperature, and longer half-life was observed for PEG-crisantaspase (87.74 min) at 50 °C compared to the native form (9.79 min). The activation energy of denaturation of PEG-crisantaspase (307.1 kJ mol-1) was higher than for crisantaspase (218.1 kJ mol-1) and Glyco-crisantaspase (120.0 kJ mol-1), which means that more energy is required to overcome the energy barrier of the unfolding process. According to our results, PEG-crisantaspase is more thermostable than its native form, while Glyco-crisantaspase is more thermosensitive.


Asunto(s)
Asparaginasa , Polietilenglicoles , Glicosilación , Termodinámica , Temperatura , Cinética , Estabilidad de Enzimas
6.
Future Microbiol ; 19: 157-171, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882841

RESUMEN

Aim: To review the available literature about heterologous expression of fungal L-asparaginase (L-ASNase). Materials & methods: A search was conducted across PubMed, Science Direct, Scopus and Web of Science databases; 4172 citations were identified and seven articles were selected. Results: The results showed that heterologous expression of fungal L-ASNase was performed mostly in bacterial expression systems, except for a study that expressed L-ASNase in a yeast system. Only three publications reported the purification and characterization of the enzyme. Conclusion: The information reported in this systematic review can contribute significantly to the recognition of the importance of biotechnological techniques for L-ASNase production.


Asparaginase is a common treatment for the most common type of leukemia in children. These treatments generally use asparaginase sourced from bacteria. Some people can experience bad reactions to these treatments. One way that has been explored to avoid this is to use asparaginase sourced from fungi because they are more similar to humans. However, fungi produce less asparaginase than bacteria. This review looks into ways that the production of fungal asparaginases can be made more productive.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginasa/genética , Asparaginasa/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Bacterias/metabolismo , Antineoplásicos/uso terapéutico
7.
Life (Basel) ; 13(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38004285

RESUMEN

L-asparaginases from bacterial sources have been used in antineoplastic treatments and the food industry. A type II L-asparaginase encoded by the N-truncated gene ansZP21 of halotolerant Bacillus subtilis CH11 isolated from Chilca salterns in Peru was expressed using a heterologous system in Escherichia coli BL21 (DE3)pLysS. The recombinant protein was purified using one-step nickel affinity chromatography and exhibited an activity of 234.38 U mg-1 and a maximum catalytic activity at pH 9.0 and 60 °C. The enzyme showed a homotetrameric form with an estimated molecular weight of 155 kDa through gel filtration chromatography. The enzyme half-life at 60 °C was 3 h 48 min, and L-asparaginase retained 50% of its initial activity for 24 h at 37 °C. The activity was considerably enhanced by KCl, CaCl2, MgCl2, mercaptoethanol, and DL-dithiothreitol (p-value < 0.01). Moreover, the Vmax and Km were 145.2 µmol mL-1 min-1 and 4.75 mM, respectively. These findings evidence a promising novel type II L-asparaginase for future industrial applications.

8.
Pharmaceutics ; 15(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37765229

RESUMEN

The interest in plant-derived virus-like particles (pVLPs) for the design of a new generation of nanocarriers is based on their lack of infection for humans, their immunostimulatory properties to fight cancer cells, and their capability to contain and release cargo molecules. Asparaginase (ASNase) is an FDA-approved drug to treat acute lymphoblastic leukemia (LLA); however, it exhibits high immunogenicity which often leads to discontinuation of treatment. In previous work, we encapsulated ASNase into bacteriophage P22-based VLPs through genetic-directed design to form the ASNase-P22 nanobioreactors. In this work, a commercial ASNase was encapsulated into brome mosaic virus-like particles (BMV-VLPs) to form stable ASNase-BMV nanobioreactors. According to our results, we observed that ASNase-BMV nanobioreactors had similar cytotoxicity against MOLT-4 and Reh cells as the commercial drug. In vivo assays showed a higher specific anti-ASNase IgG response in BALB/c mice immunized with ASNase encapsulated into BMV-VLPs compared with those immunized with free ASNase. Nevertheless, we also detected a high and specific IgG response against BMV capsids on both ASNase-filled capsids (ASNase-BMV) and empty BMV capsids. Despite the fact that our in vivo studies showed that the BMV-VLPs stimulate the immune response either empty or with cargo proteins, the specific cytotoxicity against leukemic cells allows us to propose ASNase-BMV as a potential novel formulation for LLA treatment where in vitro and in vivo evidence of functionality is provided.

9.
Pharmaceutics ; 15(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765320

RESUMEN

The search for new drug-producing microorganisms is one of the most promising situations in current world scientific scenarios. The use of molecular biology as well as the cloning of protein and compound genes is already well established as the gold standard method of increasing productivity. Aiming at this increase in productivity, this work aims at the cloning, purification and in silico analysis of l-asparaginase from Fusarium proliferatum in Komagataella phaffii (Pichia pastoris) protein expression systems. The l-asparaginase gene (NCBI OQ439985) has been cloned into Pichia pastoris strains. Enzyme production was analyzed via the quantification of aspartic B-hydroxamate, followed by purification on a DEAE FF ion exchange column. The in silico analysis was proposed based on the combined use of various technological tools. The enzymatic activity found intracellularly was 2.84 IU/g. A purification factor of 1.18 was observed. The in silico analysis revealed the position of five important amino acid residues for enzymatic activity, and likewise, it was possible to predict a monomeric structure with a C-score of 1.59. The production of the enzyme l-asparaginase from F. proliferatum in P. pastoris was demonstrated in this work, being of great importance for the analysis of new methodologies in search of the production of important drugs in therapy.

10.
Front Pharmacol ; 14: 1208277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426818

RESUMEN

Heterologous expression of L-asparaginase (L-ASNase) has become an important area of research due to its clinical and food industry applications. This review provides a comprehensive overview of the molecular and metabolic strategies that can be used to optimize the expression of L-ASNase in heterologous systems. This article describes various approaches that have been employed to increase enzyme production, including the use of molecular tools, strain engineering, and in silico optimization. The review article highlights the critical role that rational design plays in achieving successful heterologous expression and underscores the challenges of large-scale production of L-ASNase, such as inadequate protein folding and the metabolic burden on host cells. Improved gene expression is shown to be achievable through the optimization of codon usage, synthetic promoters, transcription and translation regulation, and host strain improvement, among others. Additionally, this review provides a deep understanding of the enzymatic properties of L-ASNase and how this knowledge has been employed to enhance its properties and production. Finally, future trends in L-ASNase production, including the integration of CRISPR and machine learning tools are discussed. This work serves as a valuable resource for researchers looking to design effective heterologous expression systems for L-ASNase production as well as for enzymes production in general.

11.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446393

RESUMEN

L-Asparaginase (ASNase) is a biopharmaceutical used as an essential drug in the treatment of acute lymphoblastic leukemia (ALL). Yet, some cases of ALL are naturally resistant to ASNase treatment, which results in poor prognosis. The REH ALL cell line, used as a model for studying the most common subtype of ALL, is considered resistant to treatment with ASNase. Cathepsin B (CTSB) is one of the proteases involved in the regulation of in vivo ASNase serum half-life and it has also been associated with the progression and resistance to treatment of several solid tumors. Previous works have shown that, in vitro, ASNase is degraded when incubated with REH cell lysate, which is prevented by a specific CTSB inhibitor, suggesting a function of this protease in the ASNase resistance of REH cells. In this work, we utilized a combination of CRISPR/Cas9 gene targeting and enzymatic measurements to investigate the relevance of CTSB on ASNase treatment resistance in the ALL model cell line. We found that deletion of CTSB in REH ALL cells did not confer ASNase treatment sensitivity, thus suggesting that intrinsic expression of CTSB is not a mechanism that drives the resistant nature of these ALL cells to enzymes used as the first-line treatment against leukemia.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginasa/farmacología , Asparaginasa/metabolismo , Factor Intrinseco/uso terapéutico , Catepsina B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Línea Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
Braz J Microbiol ; 54(3): 1573-1587, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37480457

RESUMEN

L-asparaginase is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. The present work aimed to study the endophytic fungal diversity of Grewia hirsuta and their ability to produce L-asparaginase. A total of 1575 culturable fungal endophytes belonging to four classes, Agaricomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes, were isolated. The isolates were grouped into twenty-one morphotypes based on their morphological characteristics. Representative species from each group were identified based on their microscopic characteristics and evaluation of the ITS and LSU rDNA sequences. Most of the fungal endophytes were recovered from the leaves compared to other plant parts. Diaporthe sp. was the predominant genus with a colonization frequency of 8.62%. Shannon-Wiener index for diversity ranged from 2.74 to 2.88. All the plant parts showed similar Simpson's index values, indicating a uniform species diversity. Among the sixty-three fungal endophytes screened, thirty-two were identified as L-asparaginase-producing isolates. The enzyme activities of fungal endophytes estimated by the nesslerization method were found to be in the range of 4.65-0.27 IU/mL with Fusarium foetens showing maximum enzyme activity of 4.65 IU/mL. This study for the first time advocates the production of L-asparaginase from Fusarium foetens along with the endophytic fungal community composition of Grewia hirsuta. The results indicate that the fungal endophyte Fusarium foetens isolated in the present study could be a potent source of L-asparaginase.


Asunto(s)
Grewia , Plantas Medicinales , Asparaginasa/genética , Endófitos/genética
13.
Braz J Microbiol ; 54(3): 1645-1654, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37036659

RESUMEN

Microbial L-asparaginase is well known for its application in food industries to reduce acrylamide content in fried starchy food. L-asparaginase produced by Arctic actinomycetes Streptomyces koyangensis SK4 was purified and studied for biochemical characterization. The L-asparaginase was purified with a yield of 15.49% and final specific activity of 179.77 IU/mg of protein. The enzyme exhibited a molecular weight of 43 kDa. The optimum pH and temperature for maximum activity of the purified enzyme were 8.5 °C and 40 °C, respectively. The enzyme expressed maximum activity at an incubation period of 30 min and a substrate concentration of 0.06 M. The enzyme has a low Km value of 0.041 M and excellent substrate specificity toward L-asparagine. The enzyme activity was inhibited by metal ions Ba2+ and Hg2+, while Mn2+ and Mg2+ enhanced the activity. The study evaluated the acrylamide reduction potential of L-asparaginase from Streptomyces koyangensis SK4 in potato chips. The blanching plus L-asparaginase treatment of potato slices resulted in a 50% reduction in acrylamide content. The study illustrated an effective acrylamide reduction strategy in potato chips using L-asparaginase from a psychrophilic actinomycete. Besides the acrylamide reduction potential, L-asparaginase from Streptomyces koyangensis SK4 also did not exhibit any glutaminase or urease activity which is an outstanding feature of L-asparaginase to be used as a chemotherapeutic agent.


Asunto(s)
Asparaginasa , Streptomyces , Asparaginasa/genética , Asparaginasa/metabolismo , Acrilamida/química , Acrilamida/metabolismo , Streptomyces/metabolismo , Temperatura
14.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108713

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Asparaginasa/genética , Asparaginasa/uso terapéutico , Escherichia coli/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Asparagina , Proteínas Recombinantes de Fusión/uso terapéutico , Antineoplásicos/uso terapéutico
15.
Med Oncol ; 40(5): 150, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37060469

RESUMEN

L-Asparaginase is an antileukemic drug long approved for clinical use to treat childhood acute lymphoblastic leukemia, the most common cancer in this population worldwide. However, the efficacy and its use as a drug have been subject to debate due to the variety of adverse effects that patients treated with it present, as well as the prompt elimination in plasma, the need for multiple administrations, and high rates of allergic reactions. For this reason, the search for new, less immunogenic variants has long been the subject of study. This review presents the main aspects of the L-asparaginase enzyme from a structural, pharmacological, and clinical point of view, from the perspective of its use in chemotherapy protocols in conjunction with other drugs in the different treatment phases.


Asunto(s)
Antineoplásicos , Hipersensibilidad a las Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Asparaginasa/uso terapéutico , Asparaginasa/efectos adversos , Antineoplásicos/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
16.
HU Rev. (Online) ; 49: 1-11, 20230000.
Artículo en Portugués | LILACS | ID: biblio-1562881

RESUMEN

Introdução: O tratamento da leucemia linfoblástica aguda (LLA) é relacionado a eventos adversos (EA) e mortalidade por toxicidade dos medicamentos utilizados. Protocolos com L-asparaginase (L-Asp) têm demonstrado melhor prognóstico, porém podem causar hipersensibilidade e desenvolvimento de anticorpos neutralizantes por ser produzida a partir da Escherichia coli. A conjugação de E. coli L-Asp com monometoxipolietilenoglicol resulta na PEG-Asp, com menor imunogenicidade e maior meia-vida. Objetivo: Avaliar eficácia e segurança da PEG-Asp, em comparação à L-Asp, no tratamento de LLA, e sua viabilidade econômica para subsidiar a tomada de decisão quanto à sua incorporação. Material e Métodos: Estudo descritivo de síntese de evidências e avaliação econômica. Busca de evidências foi realizada no MEDLINE, Cochrane Library, Embase, Epistemonikos, e agências de avaliação de tecnologias em saúde. Foram considerados elegíveis revisões sistemáticas, ensaios clínicos e estudos observacionais, publicados em inglês, espanhol e português, independente da data. Viabilidade econômica foi calculada a partir do custo do uso da PEG-Asp no protocolo GRAALL ­ 2003 frente ao valor faturado via Autorização de Procedimentos de Alta Complexidade. Resultados: As evidências demonstraram eficácia semelhante entre PEG-Asp e L-Asp para maioria dos desfechos de interesse, com superioridade na prevenção de leucemia no sistema nervoso central em adultos e comodidade posológica. PEG-Asp demonstrou maior frequência de EA em adultos recém diagnosticados, e ausência de diferença na toxicidade e mortalidade nos recidivados. A incorporação da PEG-Asp se mostrou economicamente viável para pacientes adultos, e desvantajosa naqueles com 18 e 19 anos incompletos, considerando superfície corpórea média de 1,7m². Conclusão: Recomendou-se a incorporação de PEG-Asp para tratamento de LLA em pacientes acima de 18 anos e naqueles com 18 a 19 anos incompletos, deve-se avaliar a viabilidade econômica em função da superfície corpórea. Além do perfil de eficácia e segurança da PEG-Asp, não há medicamentos dessa classe terapêutica com registro para adultos na Agência Nacional de Vigilância Sanitária.


Introduction: Treatment of acute lymphoblastic leukemia (ALL) is associated with adverse events (AEs) and mortality due to toxicity of drugs used. Protocols with L-asparaginase (L-Asp) have shown improved prognosis, but can cause hypersensitivity and development of neutralizing antibodies, as L-Asp is produced from Escherichia coli. The conjugation of E. coli L-Asp with monomethoxypolyethylene glycol results in PEG-Asp, with lower immunogenicity and longer half-life. Objective: To evaluate the efficacy and safety of PEG-Asp, compared to L-Asp, in ALL treatment, and its economic viability in order to subsidize decision making regarding its incorporation. Material and Methods: Descriptive study of evidence synthesis and economic evaluation. Evidence was searched in MEDLINE, Cochrane Library, Embase, Epistemonikos, and Health technology assessment agencies. Systematic reviews, clinical trials and observational studies published in English, Spanish and Portuguese, regardless of date, were considered eligible. Economic viability was calculated based on the cost of using PEG-Asp in GRAALL - 2003 protocol compared to the amount billed via High-complexity Procedures Authorization. Results: Evidence showed similar efficacy between PEG-Asp and L-Asp for most of the outcomes of interest, with superiority in prevention of Central Nervous System leukemia in adults and in dosage convenience. PEG-Asp showed a higher frequency of AEs in newly diagnosed adults, and no difference in toxicity and mortality in relapsed adults. The incorporation of PEG-Asp proved to be economically viable for adult patients, and disadvantageous for patients between 18 and 19 years of age, considering a mean body surface area of 1.7m². Conclusion: Incorporation of PEG-Asp for the treatment of ALL in patients over 18 years was recommended, and in those aged 18 to 19 years incomplete, the economic viability should be assessed according to body surface area. In addition to the efficacy and safety profile of PEG-Asp, there are no drugs in this therapeutic class for adults registered within ANVISA.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Evaluación de la Tecnología Biomédica , Costos y Análisis de Costo , Gestión en Salud , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Evaluación de Eficacia-Efectividad de Intervenciones
17.
Pediatr Blood Cancer ; 70(4): e30199, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36633223

RESUMEN

BACKGROUND: L-asparaginase (L-ASNase) is an essential component of chemotherapy strategies due to its differential action between normal and leukemic cells. Recently, concerns about the efficiency of commercial formulations administered in developing countries have been reported, and available methods have limitations for directly determining the quality of the formulation of the medications. PROCEDURE: We developed a cell-based protocol to analyze the activity of different L-ASNase formulations used in Colombia to induce apoptosis of the NALM-6 cell line after 24, 48, and 72 hours, using flow cytometry. Then we compared results and determined the statistically significant differences. RESULTS: Three statistically different groups, ranging from full to no activity against leukemic cells, using 0.05, 0.5, and 5.0 IU/ml concentrations, were identified. Group 1 (asparaginase codified [ASA]2-4) exhibited very low to no activity against B-cell acute lymphoblastic leukemia (B-ALL) cells. Group 2 (ASA6) exhibited intermediate-level activity, and group 3 (ASA1 and ASA5) exhibited high activity. CONCLUSIONS: Differences found between the therapeutic formulations of L-ASNase distributed in Colombia raise concerns about the quality of the treatment administered to patients in low- and middle-income countries. Therefore, we recommend a preclinical evaluation of formulations of L-ASNase in order to prevent therapeutical impacts on the outcome of ALL patients.


Asunto(s)
Antineoplásicos , Asparaginasa , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Antineoplásicos/uso terapéutico , Asparaginasa/uso terapéutico , Línea Celular , Colombia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
18.
Clin Transl Oncol ; 25(3): 776-785, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36609651

RESUMEN

BACKGROUND: Cetuximab, a monoclonal antibody targeting epidermal growth factor receptor (EGFR), is effective for RAS wild-type metastatic colorectal cancer (mCRC) patients. However, cetuximab resistance often occur and the mechanism has not been fully elucidated. The purpose of this study was to investigate the role of asparaginyl endopeptidase (AEP) in cetuximab resistance. METHODS: Differentially expressed genes between cetuximab responders and non-responders were identified by analyzing the gene expression profile GSE5851, retrieved from Gene Expression Omnibus (GEO). The potential genes were further validated in cetuximab-resistant CRC cell lines. The expression of AEP in the peripheral blood and tumor tissues of mCRC patients in our hospital were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The survival analysis was carried out by Kaplan-Meier method. The function and associated pathways of AEP were further investigated by lentivirus transfection, CCK8 assay, colony formation assay, real-time polymerase chain reaction (qPCR) and western blot. RESULTS: Through bioinformatics analysis, we found that the expression of AEP gene was related to progress free survival (PFS) of mCRC patients treated with cetuximab alone (P = 0.00133). The expression of AEP was significantly higher in the cetuximab-resistant CRC cell lines, as well as in mCRC patients with shorter PFS treated with cetuximab-containing therapy. Furthermore, AEP could decrease the sensitivity of CRC cells to cetuximab in vitro. And the phosphorylation level of MEK and ERK1/2 was increased in AEP overexpression cells. The downregulation of AEP using specific inhibitors could partially restore the sensitivity of CRC cells to cetuximab. CONCLUSION: The higher expression of AEP could contribute to the shorter PFS of cetuximab treatment in mCRC. The reason might be that AEP could promote the phosphorylation of MEK/ERK protein in the downstream signal pathway of EGFR.


Asunto(s)
Neoplasias Colorrectales , Cisteína Endopeptidasas , Resistencia a Antineoplásicos , Humanos , Cetuximab/farmacología , Cetuximab/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/genética , Transducción de Señal , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Sistema de Señalización de MAP Quinasas
19.
Rev. peru. biol. (Impr.) ; 30(1)ene. 2023.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1450329

RESUMEN

El objetivo del estudio fue realizar la caracterización bioinformática, así como optimizar la producción de L-asparaginasa extracelular de Bacillus sp. M62 aislada de las salinas de Maras (Cusco). Para ello, se verificó la producción de L-asparaginasa mediante el viraje del medio M9 modificado con azul de bromofenol 0.0075%, pH 7.4 a 37 °C por 72 h. A la vez, se extrajo el ADN genómico para amplificar los genes ribosómicos 16S y el gen ansA3. La secuencia aminoacídica codificada por el gen ansA3 se predijo mediante análisis bioinformático. La producción de L-asparaginasa intracelular y extracelular se evaluó a diferentes niveles de glucosa, L-asparagina, NaCl y pH en el medio M9 modificado. Adicionalmente, las actividades enzimáticas de L-asparaginasa y L-glutaminasa se determinaron mediante cuantificación del amonio liberado por el método de Nessler. Así, Bacillus sp. M62 produjo el viraje del medio M9 modificado, obtuvo alta similitud y cercanía evolutiva con Bacillus licheniformis, se encontró que el gen ansA3 amplificado codificaba para 319 aa, dentro de la cual se predijo una secuencia patrón del sitio activo (GFVITHGTDTM ) y 15 sitios inmunogénicos. La producción de L-asparaginasa extracelular fue superior a la intracelular, la que se optimizó de 0.37 U/mL (0.24 U/mg) a 2.15 ± 0.39 U/mL (0.63 U/mg). Finalmente, se encontró que Bacillus sp. M62 presenta L-asparaginasa extracelular con mínima actividad de L-glutaminasa.


The aim of this study was to perform bioinformatics characterization and optimize the production of extracellular L-asparaginase from Bacillus sp. M62, isolated from the Maras salt ponds (Cusco). To achieve this, the production of L-asparaginase was verified by the change in color of modified M9 medium, containing 0.0075% bromophenol blue, at pH 7.4 and 37°C for 72 hours. Genomic DNA was extracted to amplify the 16S ribosomal genes and the ansA3 gene. The amino acid sequence encoded by the ansA3 gene was predicted using bioinformatic analysis. The production of intracellular and extracellular L-asparaginase was evaluated at different levels of glucose, L-asparagine, NaCl, and pH in modified M9 medium. Additionally, the enzymatic activities of L-asparaginase and L-glutaminase were determined by quantifying the released ammonium using the Nessler method. Bacillus sp. M62 showed the change in color of the modified M9 medium, high similarity, and evolutionary closeness to Bacillus licheniformis. The amplified ansA3 gene was found to encode for 319 amino acids, with a predicted active site pattern (GFVITHGTDTM) and 15 immunogenic sites. The production of extracellular L-asparaginase was found to be higher than intracellular L-asparaginase and was optimized from 0.37 U/mL (0.24 U/mg) to 2.15 ± 0.39 U/mL (0.63 U/mg). Finally, it was found that Bacillus sp. M62 presents extracellular L-asparaginase with minimal L-glutaminase activity.

20.
F1000Res ; 12: 1322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38434634

RESUMEN

On the occasion of the 20th anniversary of the discovery of acrylamide in food, an analysis of patents related to the mitigation of this compound in food products obtained through immersion frying was carried out. For this purpose, a comprehensive search, compilation, and information analysis were conducted using free online databases such as Google Patents, Patenscope, and Lens. The search yielded a total of 79 patents within the considered time period (2002-2022). The countries with the highest number of granted patents were the United States, the European Union, and South Korea. The patents were classified into four main approaches: raw material modification (49%), application of pre-treatments (27%), process modification (16%), and measurement techniques (8%). Among the results, Frito-Lay, an American company, stands out as the food industry company with the highest number of granted patents, totaling 15. Based on this review, it is concluded that while a significant number of patents have been granted in recent years, there is still a lag in developing countries. Furthermore, more studies are needed to determine acrylamide in starchy food matrices subjected to immersion frying different from potatoes.


Asunto(s)
Acrilamida , Patentes como Asunto , Acrilamida/análisis , Culinaria/historia , Análisis de los Alimentos , Almidón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA