Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Stress Chaperones ; 28(6): 721-729, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37462825

RESUMEN

Being overweight is already considered a metabolic risk factor, which can be overcome by increasing cardiorespiratory fitness (CRF). Acute exercise is known to induce changes in plasma hormones and heat shock proteins release. However, there is a lack of studies investigating the impact of body composition and CRF on these variables following acute aerobic exercise. To assess the influence of body composition and cardiorespiratory fitness on plasma heat shock protein 72 kDa (HSP72), norepinephrine (NE), insulin, and glucose responses to an acute aerobic exercise bout in the fed state. Twenty-four healthy male adults were recruited and allocated into three groups: overweight sedentary (n = 8), normal weight sedentary (n = 8), and normal weight active (n = 8). The volunteers performed an acute moderate exercise session on a treadmill at 70% of VO2 peak. Blood samples were drawn at baseline, immediately post-exercise, and at 1-h post-exercise. The exercise session did not induce changes in HSP72 nor NE but changes in glucose and insulin were affected by body mass index. Also, subjects with elevated CRF maintain reduced NE through exercise. At baseline, the overweight sedentary group showed elevated NE, insulin, and glucose; these last two impacting the HOMA-IR index. Thirty minutes of aerobic exercise at 70% VO2 peak, in the fed state, did not change the levels of plasma NE and HSP72. Elevated body composition seems to impact metabolic profile and increase sympathetic activity. Conversely, subjects with increased cardiorespiratory fitness seem to have attenuated sympathetic activity.


Asunto(s)
Capacidad Cardiovascular , Insulina , Adulto , Humanos , Masculino , Sobrepeso , Glucosa , Proteínas del Choque Térmico HSP72 , Capacidad Cardiovascular/fisiología , Norepinefrina , Ejercicio Físico/fisiología , Composición Corporal
2.
Biomolecules ; 12(10)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36291584

RESUMEN

AIMS: We hypothesized that critically ill patients with SARS-CoV-2 infection and insulin resistance would present a reduced Heat Shock Response (HSR), which is a pathway involved in proteostasis and anti-inflammation, subsequently leading to worse outcomes and higher inflammation. In this work we aimed: (i) to measure the concentration of extracellular HSP72 (eHSP72) in patients with severe COVID-19 and in comparison with noninfected patients; (ii) to compare the HSR between critically ill patients with COVID-19 (with and without diabetes); and (iii) to compare the HSR in these patients with noninfected individuals. METHODS: Sixty critically ill adults with acute respiratory failure with SARS-CoV-2, with or without diabetes, were selected. Noninfected subjects were included for comparison (healthy, n = 19 and patients with diabetes, n = 22). Blood samples were collected to measure metabolism (glucose and HbA1c); oxidative stress (lypoperoxidation and carbonyls); cytokine profile (IL-10 and TNF); eHSP72; and the HSR (in vitro). RESULTS: Patients with severe COVID-19 presented higher plasma eHSP72 compared with healthy individuals and noninfected patients with diabetes. Despite the high level of plasma cytokines, no differences were found between critically ill patients with COVID-19 with or without diabetes. Critically ill patients, when compared to noninfected, presented a blunted HSR. Oxidative stress markers followed the same pattern. No differences in the HSR (extracellular/intracellular level) were found between critically ill patients, with or without diabetes. CONCLUSIONS: We demonstrated that patients with severe COVID-19 have elevated plasma eHSP72 and that their HSR is blunted, regardless of the presence of diabetes. These results might explain the uncontrolled inflammation and also provide insights on the increased risk in developing type 2 diabetes after SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Interleucina-10 , SARS-CoV-2 , Enfermedad Crítica , Proteínas del Choque Térmico HSP72/metabolismo , Hemoglobina Glucada , Respuesta al Choque Térmico , Citocinas , Inflamación , Chaperonas Moleculares , Glucosa
3.
Braz. j. otorhinolaryngol. (Impr.) ; Braz. j. otorhinolaryngol. (Impr.);86(6): 703-710, Nov.-Dec. 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1142603

RESUMEN

Abstract Introduction: The 72 kDa heat shock protein, HSP72, located intracellularly provides cochlear cytoprotective and anti-inflammatory roles in the inner ear during stressful noise challenges. The expression of intracellular HSP72 (iHSP72) can be potentiated by alanyl-glutamine dipeptide supplementation. Conversely, these proteins act as pro-inflammatory signals in the extracellular milieu (eHSP72). Objective: We explore whether noise-induced hearing loss promotes both intracellular and extracellular HSP72 heat shock response alterations, and if alanyl-glutamine dipeptide supplementation could modify heat shock response and prevent hearing loss. Methods: Female 90 day-old Wistar rats (n = 32) were randomly divided into four groups: control, noise-induced hearing loss, treated with alanyl-glutamine dipeptide and noise-induced hearing loss plus alanyl-glutamine dipeptide. Auditory brainstem responses were evaluated before noise exposure (124 dB SPL for 2 h) and 14 days after. Cochlea, nuclear cochlear complex and plasma samples were collected for the measurement of intracellular HSP72 and extracellular HSP72 by a high-sensitivity ELISA kit. Results: We found an increase in both iHSP72 and eHSP72 levels in the noise-induced hearing loss group, which was alleviated by alanyl-glutamine dipeptide treatment. Furthermore, H-index of HSP72 (plasma/cochlea eHSP72/iHSP72 ratio) was increased in the noise-induced hearing loss group, but prevented by alanyl-glutamine dipeptide treatment, although alanyl-glutamine dipeptide had no effect on auditory threshold. Conclusions: Our data indicates that cochlear damage induced by noise exposure is accompanied by local and systemic heat shock response markers. Also, alanyl-glutamine reduced stress markers even though it had no effect on noise-induced hearing loss. Finally, plasma levels of 72 kDa heat shock proteins can be used as a biomarker of auditory stress after noise exposure.


Resumo Introdução: A proteína de choque térmico de 72 kDa, HSP72 localizada intracelularmente, tem papéis citoprotetores e anti-inflamatórios cocleares na orelha interna durante situações de ruído estressantes. A expressão dessa proteína pode ser potencializada pela suplementação com dipeptídeo de alanil-glutamina. Por outro lado, essas proteínas atuam como sinais pró-inflamatórios no meio extracelular. Objetivo: Investigar se a perda auditiva induzida por ruído promove alterações tanto das proteínas HSP72 intracelulares quanto extracelulares na resposta de choque térmico e se a suplementação com alanil-glutamina pode modificar a resposta de choque térmico e evitar a perda auditiva. Método: Ratos Wistar fêmeas, com 90 dias de idade (n = 32), foram divididos aleatoriamente em quatro grupos: controle, perda auditiva induzida por ruído, tratados com alanil-glutamina e perda auditiva induzida por ruído mais alanil-glutamina. Os potenciais evocados auditivos do tronco encefálico foram avaliados antes da exposição ao ruído (124 dB NPS por 2 h) e 14 dias após. A cóclea, o complexo nuclear coclear e amostras de plasma foram coletadas para mensuração de HSP72 intra e extracelular com um kit Elisa de alta sensibilidade. Resultados: Houve um aumento nos níveis de HSP72 intra e extracelular no grupo perda auditiva induzida por ruído, que foi minimizado pelo tratamento com alanil-glutamina. Além disso, o índice H das HSP72 (razão HSP72 extracelular/HSP72intracelular plasma/cóclea) aumentou no grupo perda auditiva induzida por ruído, mas foi limitado pelo tratamento com alanil-glutamina, embora o alanil-glutamina não tenha efeito no limiar auditivo. Conclusões: Nossos dados indicam que o dano coclear induzido pela exposição ao ruído é acompanhado por marcadores da resposta de choque térmico locais e sistêmicos. Além disso, alanil-glutamina reduziu os marcadores de estresse, mesmo não tendo efeito sobre a perda auditiva induzida por ruído. Finalmente, os níveis plasmáticos de proteínas de choque térmico de 72 kDa podem ser usados como biomarcador do estresse auditivo, após a exposição ao ruído.


Asunto(s)
Animales , Femenino , Ratas , Pérdida Auditiva Provocada por Ruido/prevención & control , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Ratas Wistar , Respuesta al Choque Térmico , Suplementos Dietéticos , Dipéptidos , Proteínas de Choque Térmico
4.
Braz J Otorhinolaryngol ; 86(6): 703-710, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31255578

RESUMEN

INTRODUCTION: The 72kDa heat shock protein, HSP72, located intracellularly provides cochlear cytoprotective and anti-inflammatory roles in the inner ear during stressful noise challenges. The expression of intracellular HSP72 (iHSP72) can be potentiated by alanyl-glutamine dipeptide supplementation. Conversely, these proteins act as pro-inflammatory signals in the extracellular milieu (eHSP72). OBJECTIVE: We explore whether noise-induced hearing loss promotes both intracellular and extracellular HSP72 heat shock response alterations, and if alanyl-glutamine dipeptide supplementation could modify heat shock response and prevent hearing loss. METHODS: Female 90 day-old Wistar rats (n=32) were randomly divided into four groups: control, noise-induced hearing loss, treated with alanyl-glutamine dipeptide and noise-induced hearing loss plus alanyl-glutamine dipeptide. Auditory brainstem responses were evaluated before noise exposure (124dB SPL for 2h) and 14days after. Cochlea, nuclear cochlear complex and plasma samples were collected for the measurement of intracellular HSP72 and extracellular HSP72 by a high-sensitivity ELISA kit. RESULTS: We found an increase in both iHSP72 and eHSP72 levels in the noise-induced hearing loss group, which was alleviated by alanyl-glutamine dipeptide treatment. Furthermore, H-index of HSP72 (plasma/cochlea eHSP72/iHSP72 ratio) was increased in the noise-induced hearing loss group, but prevented by alanyl-glutamine dipeptide treatment, although alanyl-glutamine dipeptide had no effect on auditory threshold. CONCLUSIONS: Our data indicates that cochlear damage induced by noise exposure is accompanied by local and systemic heat shock response markers. Also, alanyl-glutamine reduced stress markers even though it had no effect on noise-induced hearing loss. Finally, plasma levels of 72kDa heat shock proteins can be used as a biomarker of auditory stress after noise exposure.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Animales , Suplementos Dietéticos , Dipéptidos , Femenino , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/prevención & control , Proteínas de Choque Térmico , Respuesta al Choque Térmico , Ratas , Ratas Wistar
5.
Food Res Int ; 122: 330-339, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31229086

RESUMEN

Common bean (Phaseolus vulgaris L.) is a source of bioactive peptides, but little is known about its effects on hypercholesterolemia, oxidative stress, and the inflammatory process. Therefore, the aim of this study was to evaluate the effect of whole flour and bean protein hydrolysate of common bean variety Carioca on inflammation and oxidative stress in BALB/c mice. Four experimental groups were included in the study: standard diet (SD), high fat high cholesterol diet (HFC), high fat high cholesterol diet and whole bean flour (HFC-F); and high fat high cholesterol diet and bean protein hydrolysate (HFC-PH). Animals fed with bean protein hydrolysate showed lower weight gain and food intake. Animals fed with whole bean flour showed lower alanine aminotransferase and low-density lipoprotein cholesterol levels than animals fed with bean protein hydrolysate. SOD mRNA was lower in HFC, HFC-F and HFC-PH groups whereas SOD concentration was higher in HFC-F and HFC-PH groups. HSP72 mRNA expression was lower in the HFC-F group in relation to HFC-PH. IL-10 and PPARα mRNA expression was lower in HFC-F and HFC-PH groups in comparison with SD. The whole bean flour and bean protein hydrolysate reduced inflammation and the risk factors for cardiovascular diseases in BALB/c mice.


Asunto(s)
Antiinflamatorios/farmacología , Dieta Alta en Grasa , Harina , Phaseolus/química , Hidrolisados de Proteína/farmacología , Animales , Antiinflamatorios/química , Hiperlipidemias/metabolismo , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Hidrolisados de Proteína/química
6.
BMC Nephrol ; 20(1): 158, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068174

RESUMEN

BACKGROUND: Pirfenidone is an orally active drug used for the treatment of idiopathic pulmonary fibrosis to slow loss of lung function; it acts mainly through an antifibrotic effect but also possesses antioxidant and anti-inflammatory properties. We assessed the effect of prophylactic administration of pirfenidone on acute kidney injury due to bilateral renal ischemia. METHODS: Eighteen rats were included and divided in: 1) sham-operated rats (S), 2) rats underwent bilateral renal ischemia for 20 min (I/R), and 3) rats treated with pirfenidone 700 mg/kg/day 24 h before surgery and subjected to bilateral renal ischemia for 20 min (I/R + PFN). All the rats were euthanized and studied 24 h after renal reperfusion. RESULTS: As was expected, the I/R group exhibited a significant reduction in creatinine clearance, urinary output and renal blood flow, as well as extensive tubular injury. These alterations were associated with a significant decrease in urinary excretion of nitrites and nitrates (UNO2/NO3V). In the I/R + PFN group, recovery of renal function and UNO2/NO3V was observed, together with lesser histological signs of tubular injury compared to the I/R group. CONCLUSIONS: This study shows that prophylactic administration of pirfenidone prevented acute kidney injury due to bilateral ischemia in the rat. Recovery of NO production appears to be one of the mechanism of pirfenidone renoprotective effect. Our findings suggest that pirfenidone is a promising drug to reduce renal injury induced by I/R.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antiinflamatorios no Esteroideos/uso terapéutico , Antioxidantes/uso terapéutico , Isquemia/complicaciones , Riñón/irrigación sanguínea , Piridonas/uso terapéutico , Lesión Renal Aguda/etiología , Animales , Riñón/patología , Masculino , Óxido Nítrico/biosíntesis , Óxido Nítrico/orina , Ratas , Ratas Wistar , Daño por Reperfusión/complicaciones
7.
Environ Res ; 147: 125-32, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26866450

RESUMEN

BACKGROUND: Chronic kidney disease is common among sugarcane workers in Central America. The main risk factor seems to be repeated high-intensity work in hot environments. Several cross-sectional studies have been performed but few longitudinal studies. OBJECTIVES: The aim of the study was to examine whether kidney function changes over a few months of work during the harvest period. METHODS: A group of male sugarcane cutters in Nicaragua (N=29, aged 17-38 years) was examined with renal biomarkers before and after shift on the first day at the start of harvest, on the sixth day during acclimatization, and then in mid-harvest 9 weeks later. A reference group (N=25, mainly office workers) was examined with the same biomarkers at start of harvest, and then at end of harvest 5 months later. RESULTS: The pre-shift renal function decreased significantly during 9 weeks of work in the cane cutters. Mean serum creatinine increased (20%), mean estimated glomerular filtration rate decreased (9%, 10mL/min), serum urea N (BUN) increased (41%), and mean urinary neutrophil gelatinase-associated lipocalin (NGAL) increased (four times). The cane cutters also developed cross-shift increases in these biomarkers, in particular serum creatinine and BUN, and in urinary uric acid. The longitudinal decrease in eGFR tended to be associated with the cross-shift increase in serum creatinine. CONCLUSIONS: There was a remarkable decrease of glomerular kidney function, after only 9 weeks of harvest. The cross-shift increase in serum creatinine may be caused by dehydration (pre-renal dysfunction), and when repeated on a daily basis this may cause permanently reduced GFR.


Asunto(s)
Agricultores , Pruebas de Función Renal , Riñón/fisiología , Saccharum , Adolescente , Adulto , Biomarcadores/análisis , Humanos , Estudios Longitudinales , Masculino , Nicaragua , Estaciones del Año , Adulto Joven
8.
J Appl Toxicol ; 36(2): 309-19, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26779593

RESUMEN

Fluoride is an important groundwater contaminant, and more than 200 million people are exposed to high fluoride levels in drinking water, the major source of fluoride exposure. Exposure above 2 ppm of fluoride is associated with renal impairment in humans. In rats, moderate levels of fluoride induce kidney injury at early stages in which the glomerular filtration rate (GFR) is not altered. In the present study, we investigated if sub-nephrotoxic stimulus induced by fluoride might impact the response to a subsequent nephrotoxic treatment with gentamicin. Male Wistar rats (~21 days) were exposed to 0, 15 or 50 ppm of fluoride through drinking water during 40 days. Afer that, rats were co-exposed to gentamicin (40 mg kg(-1) day(-1), 7 days). Gentamicin induced a marked decrease in the GFR and an increase in urinary levels as well as the protein and mRNA expression of biomarkers of early kidney injury, such as Kim-1. Interestingly, gentamicin nephrotoxicity was less pronounced in groups previously exposed to fluoride than in the group only treated with gentamicin. Fluoride induced Hsp72, a cytoprotective molecule, which might have improved the response against gentamicin. Moreover, fluoride decreased the expression of megalin, a molecule necessary for internalization of gentamicin into the proximal tubule, potentially reducing gentamicin accumulation. The present results suggest that fluoride reduced gentamicin-induced nephrotoxicity by inducing a compensatory response carried out by Hsp72 and by decreasing gentamicin accumulation. These findings should not be interpreted to suggest that fluoride is a protective agent as megalin deficiency could lead to serious adverse effects on the kidney physiology.


Asunto(s)
Fluoruros/toxicidad , Gentamicinas/toxicidad , Tasa de Filtración Glomerular/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Riñón/efectos de los fármacos , Insuficiencia Renal/inducido químicamente , Animales , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA