Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 769
Filtrar
1.
Acta Biomater ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218278

RESUMEN

Primary open angle glaucoma (POAG) is currently the most prevalent cause of irreversible blindness globally. To date, there are few in vitro models that can faithfully recapitulate the complex architecture of the trabecular meshwork (TM) and the specialized trabecular meshwork cell (TMC) characteristics that are local to structurally opposing regions. This study aimed to investigate the parameters that govern TMC phenotype by adapting the extracellular matrix structure to mimic the juxtacanalicular tissue (JCT) region of the TM. Initially, TMC phenotypic characteristics were investigated within type I collagen matrices of controlled fiber density and anisotropy, generated through confined plastic compression (PC). Notably, PC-collagen presented biophysical cues that induced JCT cellular characteristics (elastin, α-ß-Crystallin protein expression, cytoskeletal remodeling and increased mesenchymal and JCT-specific genetic markers). In parallel, a pathological mesenchymal phenotype associated with POAG was induced through localized transforming growth factor -beta 2 (TGFß-2) exposure. This resulted in a profile of alternative mesenchymal states (fibroblast/smooth muscle or myofibroblast) displayed by the TMC in vitro. Overall, the study provides an advanced insight into the biophysical cues that modulate TMC fate, demonstrating the induction of a JCT-specific TMC phenotype and transient mesenchymal characteristics that reflect both healthy or pathological scenarios. STATEMENT OF SIGNIFICANCE: Glaucoma is the most prevalent cause of blindness, with a lack of efficacy within current drug candidates. Reliable trabecular meshwork (TM) in vitro models will be critical for enhancing the fields understanding of healthy and disease states for pre-clinical testing. To date, trabecular meshwork cells (TMCs) display heterogeneity throughout the hierarchical TM, however our understanding into recapitulating these phenotypes in vitro, remains elusive. This study hypothesizes the importance of specific matrix/growth factor spatial stimuli in governing TMC phenotype. By emulating certain biophysical/biochemical in vivo parameters, we introduce an advanced profile of distinct TMC phenotypic states, reflecting healthy and disease scenarios. A notion that has not be stated prior and a fundamental consideration for future TM 3D in vitro modelling.

2.
Exp Cell Res ; : 114220, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214330

RESUMEN

Primary open-angle glaucoma (POAG), a leading cause of irreversible vision loss, is closely linked to increased intraocular pressure (IOP), with the trabecular meshwork (TM) playing a critical role in its regulation. The TM, located at the iridocorneal angle, acts as a sieve, filtering the aqueous humor from the eye into the collecting ducts, thus maintaining proper IOP levels. The transforming growth factor-beta 2 (TGF-ß2) signaling pathway has been implicated in the pathophysiology of primary open-angle glaucoma POAG particularly, in the dysfunction of the TM. This study utilizes human TM explants to closely mimic in vivo conditions, thereby minimizing transcriptional changes that could arise from cell culture enabling an exploration of the transcriptomic impacts of TGF-ß2. Through bulk RNA sequencing and immunohistological analysis, we identified distinct gene expression patterns and morphological changes induced by TGF-ß2 exposure (5ng/ml for 48 hours). Bulk RNA sequencing identified significant upregulation in genes linked to extracellular matrix (ECM) regulation and fibrotic signaling. Immunohistological analysis further elucidated the morphological alterations, including cytoskeletal rearrangements and ECM deposition, providing a visual confirmation of the transcriptomic data. Notably, the enrichment analysis unveils TGF-ß2's influence on both bone morphogenic protein (BMP) and Wnt signaling pathways, suggesting a complex interplay of molecular mechanisms contributing to TM dysfunction in glaucoma. This characterization of the transcriptomic modifications on an explant model of TM obtained under the effect of this profibrotic cytokine involved in glaucoma is crucial in order to develop and test new molecules that can block their signaling pathways.

3.
Heliyon ; 10(14): e34635, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130483

RESUMEN

Background: Recognizing the risk factors and understanding the mechanisms underlying steroid-induced ocular hypertension (SIOH) are vital to prevent potent vision loss and ensure the safety and effectiveness of dexamethasone (DEX) injections. The study aimed to develop a novel nomogram for predicting the risk of SIOH and determining safety zones for steroid injections. Methods: This single-center, retrospective, case-control study included a total of 154 eyes with available measured axial length that had undergone AS-OCT and DEX implantation at the Yonsei University Health System. The eyes were categorized into the SIOH (n = 39) and post-steroid normal IOP (n = 115) groups. We measured intraocular pressure (IOP) for all eyes prior to DEX implantation, at 1 week post-implantation, and at 1, 2, 3, 6, and 12 months thereafter. We used AS-OCT to analyze the trabecular meshwork (TM) height and ocular parameters. Results: The predictive nomogram, including TM height, yielded an AUC of 0.807 (95 % confidence interval [CI], 0.737-0.877) and demonstrated significantly higher predictive accuracy than that of previous nomograms, which did not consider TM height and had an AUC of 0.644 (95 % CI, 0.543-0.745) (p = 0.031). The calibration plot demonstrated a strong predictive accuracy for a predicted value of approximately 0.4. We established cutoff values to ensure different levels of sensitivity and specificity within the safety zone following DEX implantation. Conclusion: Our improved nomogram incorporating TM height as a newly identified risk factor, established a safety threshold for intravitreal DEX implantation, helping identify safe individuals from those who require caution.

4.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092889

RESUMEN

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Asunto(s)
Transdiferenciación Celular , Dexametasona , Glaucoma , Miofibroblastos , Factores de Intercambio de Guanina Nucleótido Rho , Malla Trabecular , Dexametasona/farmacología , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Malla Trabecular/citología , Transdiferenciación Celular/efectos de los fármacos , Animales , Humanos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/citología , Ratones , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Glaucoma/patología , Glaucoma/metabolismo , Células Cultivadas , Glucocorticoides/farmacología , Ratones Endogámicos C57BL , Masculino
5.
Polymers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125188

RESUMEN

The human trabecular meshwork (HTM) is responsible for regulating intraocular pressure (IOP) by means of gradient porosity. Changes in its physical properties, like increases in stiffness or alterations in the extracellular matrix (ECM), are associated with increases in the IOP, which is the primary cause of glaucoma. The complexity of its structure limits the engineered models to one-layered and simple approaches, which do not accurately replicate the biological and physiological cues related to glaucoma. Here, a combination of melt electrowriting (MEW) and solution electrospinning (SE) is explored as a biofabrication technique used to produce a gradient porous scaffold that mimics the multi-layered structure of the native HTM. Polycaprolactone (PCL) constructs with a height of 20-710 µm and fiber diameters of 0.7-37.5 µm were fabricated. After mechanical characterization, primary human trabecular meshwork cells (HTMCs) were seeded over the scaffolds within the subsequent 14-21 days. In order to validate the system's responsiveness, cells were treated with dexamethasone (Dex) and the rho inhibitor Netarsudil (Net). Scanning electron microscopy and immunochemistry staining were performed to evaluate the expected morphological changes caused by the drugs. Cells in the engineered membranes exhibited an HTMC-like morphology and a correct drug response. Although this work demonstrates the utility of combining MEW and SE in reconstructing complex morphological features like the HTM, new geometries and dimensions should be tested, and future works need to be directed towards perfusion studies.

6.
Vision Res ; 222: 108456, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991466

RESUMEN

Although biomechanical changes of the trabecular meshwork (TM) are important to the pathogenesis of glucocorticoids-induced ocular hypertension (GC-OHT), there is a knowledge gap in the underlying molecular mechanisms of the development of it. In this study, we performed intravitreal triamcinolone injection (IVTA) in one eye of 3 rhesus macaques. Following IVTA, we assessed TM stiffness using atomic force microscopy and investigated changes in proteomic and miRNA expression profiles. One of 3 macaques developed GC-OHT with a difference in intraocular pressure of 4.2 mmHg and a stiffer TM with a mean increase in elastic moduli of 0.60 kPa versus the non-injected control eye. In the IVTA-treated eyes, proteins associated with extracellular matrix remodeling, cytoskeletal rearrangement, and mitochondrial oxidoreductation were significantly upregulated. The significantly upregulated miR-29b and downregulated miR-335-5p post-IVTA supported the role of oxidative stress and mitophagy in the GC-mediated biomechanical changes in TM, respectively. The significant upregulation of miR-15/16 cluster post-IVTA may indicate a resultant TM cell apoptosis contributing to the increase in outflow resistance. Despite the small sample size, these results expand our knowledge of GC-mediated responses in the TM and furthermore, may help explain steroid responsiveness in clinical settings.


Asunto(s)
Glucocorticoides , Presión Intraocular , Inyecciones Intravítreas , Macaca mulatta , MicroARNs , Proteómica , Malla Trabecular , Animales , MicroARNs/genética , MicroARNs/metabolismo , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/administración & dosificación , Proteómica/métodos , Presión Intraocular/efectos de los fármacos , Presión Intraocular/fisiología , Hipertensión Ocular/metabolismo , Triamcinolona Acetonida/farmacología , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Microscopía de Fuerza Atómica , Triamcinolona/farmacología , Triamcinolona/administración & dosificación
7.
Front Med (Lausanne) ; 11: 1356839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005651

RESUMEN

Purpose: This study aimed to investigate and compare the anterior scleral thickness (AST) among high myopia (HM), primary open-angle glaucoma (POAG), and POAG with HM (HMPOAG) groups. Methods: Thirty-two HM eyes, 30 POAG eyes, and 31 HMPOAG eyes were included. The Schlemm's canal (SC) area, trabecular meshwork (TM) thickness, scleral spur (SS) length, and AST were measured using swept-source optical coherence tomography. AST was measured at 0 mm (AST0), 1 mm (AST1), 2 mm (AST2), and 3 mm (AST3) from SS. Results: The HMPOAG group had significantly thinner AST, SS length, and TM thickness than the HM and POAG groups (all p < 0.05). In addition, the SC area of the HMPOAG group was also significantly smaller than that of the HM group (p < 0.001). Conclusion: The HMPOAG group had the thinnest AST, shortest SS, thinnest TM, and smallest SC. The thinnest AST might contribute to the shortest SS, and further to the thinnest TM and smallest SC in the HMPOAG group. AST might be a novel clinical indicator in the prediction and evaluation of POAG.

8.
Methods Mol Biol ; 2816: 101-115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977592

RESUMEN

Members of the Rho family of small monomeric GTPases regulate a plethora of critical cellular functions including gene expression, cell cycle progression, and the dynamic modeling of the actin cytoskeleton. Diversity among Rho family members is derived, in part, from variations in their subcellular distribution. Localization of newly synthesized (naïve) Rho proteins to target subcellular compartments is largely governed by lipid modifications, including posttranslational prenylation. Here, using well-established and widely available contemporary methodologies, detailed protocols by which to semiquantitatively evaluate the functional consequence of posttranslational prenylation in human trabecular meshwork cells are described. We propose the novel concept that posttranslational prenylation itself is a key regulator of mammalian Rho GTPase protein expression and turnover.


Asunto(s)
Malla Trabecular , Humanos , Malla Trabecular/metabolismo , Malla Trabecular/citología , Células Cultivadas , Terpenos/metabolismo , Prenilación de Proteína , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Procesamiento Proteico-Postraduccional
10.
J Biomed Opt ; 29(7): 076008, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39070082

RESUMEN

Significance: The iStent is a popular device designed for glaucoma treatment, functioning by creating an artificial fluid pathway in the trabecular meshwork (TM) to drain aqueous humor. The assessment of iStent implantation surgery is clinically important. However, current tools offer limited information. Aim: We aim to develop innovative assessment strategies for iStent implantation using optical coherence tomography (OCT) to evaluate the position and orientation of the iStent and its biomechanical impact on outflow system dynamics. Approach: We examined four iStents in the two eyes of a glaucoma patient. Three-dimensional (3D) OCT structural imaging was conducted for each iStent, and a semi-automated algorithm was developed for iStent segmentation and visualization, allowing precise measurement of position and orientation. In addition, phase-sensitive OCT (PhS-OCT) imaging was introduced to measure the biomechanical impact of the iStent on the outflow system quantified by cumulative displacement (CDisp) of pulse-dependent trabecular TM motion. Results: The 3D structural image processed by our algorithm definitively resolved the position and orientation of the iStent in the anterior segment, revealing substantial variations in relevant parameters. PhS-OCT imaging demonstrated significantly higher CDisp in the regions between two iStents compared to locations distant from the iStents in both OD ( p = 0.0075 ) and OS ( p = 0.0437 ). Conclusions: Our proposed structural imaging technique improved the characterization of the iStent's placement. The imaging results revealed inherent challenges in achieving precise control of iStent insertion. Furthermore, PhS-OCT imaging unveiled potential biomechanical alterations induced by the iStent. This unique methodology shows potential as a valuable clinical tool for evaluating iStent implantation.


Asunto(s)
Algoritmos , Tomografía de Coherencia Óptica , Malla Trabecular , Tomografía de Coherencia Óptica/métodos , Humanos , Malla Trabecular/diagnóstico por imagen , Imagenología Tridimensional/métodos , Implantes de Drenaje de Glaucoma , Glaucoma/diagnóstico por imagen , Glaucoma/fisiopatología , Stents , Presión Intraocular/fisiología , Fenómenos Biomecánicos/fisiología
11.
Res Sq ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39041037

RESUMEN

Ocular hypertension (OHT) caused by mechanical stress and chronic glucocorticoid exposure reduces the hydraulic permeability of the conventional outflow pathway. It increases the risk for irreversible vision loss, yet healthy individuals experience nightly intraocular pressure (IOP) elevations without adverse lifetime effects. It is not known which pressure sensors regulate physiological vs. pathological OHT nor how they impact the permeability of the principal drainage pathway through the trabecular meshwork (TM). We report that OHT induced by the circadian rhythm, occlusion of the iridocorneal angle and glucocorticoids requires activation of TRPV4, a stretch-activated cation channel. Wild-type mice responded to nocturnal topical administration of the agonist GSK1016790A with IOP lowering, while intracameral injection of the agonist elevated diurnal IOP. Microinjection of TRPV4 antagonists HC067047 and GSK2193874 lowered IOP during the nocturnal OHT phase and in hypertensive eyes treated with steroids or injection of polystyrene microbeads. Conventional outflow-specific Trpv4 knockdown induced partial IOP lowering in mice with occluded iridocorneal angle and protected retinal neurons from pressure injury. Indicating a central role for TRPV4-dependent mechanosensing in trabecular outflow, HC067047 doubled the outflow facility in TM-populated steroid-treated 3D nanoscaffolds. Tonic TRPV4 signaling thus represents a fundamental property of TM biology as a driver of increased in vitro and in vivo outflow resistance. The TRPV4-dependence of OHT under conditions that mimic primary and secondary glaucomas could be explored as a novel target for glaucoma treatments.

12.
Methods Mol Biol ; 2816: 145-149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977596

RESUMEN

Clusterin, also known as apolipoprotein J, is an ATP-independent holdase chaperone protein. Clusterin is involved in various functions including protein quality control and lipid transport. Though clusterin is secreted upon stress, the intracellular fate of clusterin after a stress response is not well understood. The protocol described here utilizes clusterin tagged to fluorescent proteins like green fluorescent protein and red fluorescent protein to understand the intracellular fate of clusterin.


Asunto(s)
Clusterina , Microscopía Confocal , Clusterina/metabolismo , Humanos , Microscopía Confocal/métodos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteína Fluorescente Roja , Animales
13.
Methods Mol Biol ; 2816: 175-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977599

RESUMEN

The trabecular meshwork (TM) from primary open-angle glaucoma (POAG) cases has been found to contain decreased levels of intracellular plasmalogens. Plasmalogens are a subset of lipids involved in diverse cellular processes such as intracellular signaling, membrane asymmetry, and protein regulation. Proper plasmalogen biosynthesis is regulated by rate-limiting enzyme fatty acyl-CoA reductase (Far1). ATPase phospholipid transporting 8B2 (ATP8B2) is a type IV P-type ATPase responsible for the asymmetric distribution of plasmalogens between the intracellular and extracellular leaflets of the plasma membranes. Here we describe the methodology for extraction and culturing of TM cells from corneal tissue and subsequent downregulation of ATP8B2 using siRNA transfection. Further quantification and downstream effects of ATP8B2 gene knockdown will be analyzed utilizing immunoblotting techniques.


Asunto(s)
Glaucoma de Ángulo Abierto , Plasmalógenos , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/citología , Humanos , Plasmalógenos/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/patología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , ARN Interferente Pequeño/genética , Regulación hacia Abajo , Células Cultivadas , Técnicas de Silenciamiento del Gen
14.
Am J Physiol Cell Physiol ; 327(2): C403-C414, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881423

RESUMEN

Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.


Asunto(s)
Tamaño de la Célula , Canales de Cloruro , Canales Catiónicos TRPV , Malla Trabecular , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/agonistas , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Animales , Ratones , Tamaño de la Célula/efectos de los fármacos , Humanos , Calcio/metabolismo , Ratones Endogámicos C57BL , Presión Osmótica , Señalización del Calcio/efectos de los fármacos , Masculino , Presión Intraocular/fisiología , Presión Intraocular/efectos de los fármacos , Células Cultivadas , Femenino , Leucina/análogos & derivados , Morfolinas , Pirroles , Sulfonamidas
15.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897410

RESUMEN

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Asunto(s)
Glaucoma , Mitocondrias , NAD , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Malla Trabecular/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/tratamiento farmacológico , NAD/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Presión Intraocular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa 1/genética , Línea Celular , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Dexametasona/farmacología , Células Cultivadas
16.
Biomedicines ; 12(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927372

RESUMEN

To investigate the biological significance of Rho-associated coiled-coil-containing protein kinase (ROCK) 2 in the human trabecular meshwork (HTM), changes in both metabolic phenotype and gene expression patterns against a specific ROCK2 inhibitor KD025 were assessed in planar-cultured HTM cells. A seahorse real-time ATP rate assay revealed that administration of KD025 significantly suppressed glycolytic ATP production rate and increased mitochondrial ATP production rate in HTM cells. RNA sequencing analysis revealed that 380 down-regulated and 602 up-regulated differentially expressed genes (DEGs) were identified in HTM cells treated with KD025 compared with those that were untreated. Gene ontology analysis revealed that DEGs were more frequently related to the plasma membrane, extracellular components and integral cellular components among cellular components, and related to signaling receptor binding and activity and protein heterodimerization activity among molecular functions. Ingenuity Pathway Analysis (IPA) revealed that the detected DEGs were associated with basic cellular biological and physiological properties, including cellular movement, development, growth, proliferation, signaling and interaction, all of which are associated with cellular metabolism. Furthermore, the upstream regulator analysis and causal network analysis estimated IL-6, STAT3, CSTA and S1PR3 as possible regulators. Current findings herein indicate that ROCK2 mediates the IL-6/STAT3-, CSTA- and S1PR3-linked signaling related to basic biological activities such as glycolysis in HTM cells.

17.
Cells ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920689

RESUMEN

Primary open-angle glaucoma (POAG) is a progressive optic neuropathy with a complex, multifactorial aetiology. Raised intraocular pressure (IOP) is the most important clinically modifiable risk factor for POAG. All current pharmacological agents target aqueous humour dynamics to lower IOP. Newer therapeutic agents are required as some patients with POAG show a limited therapeutic response or develop ocular and systemic side effects to topical medication. Elevated IOP in POAG results from cellular and molecular changes in the trabecular meshwork driven by increased levels of transforming growth factor ß (TGFß) in the anterior segment of the eye. Understanding how TGFß affects both the structural and functional changes in the outflow pathway and IOP is required to develop new glaucoma therapies that target the molecular pathology in the trabecular meshwork. In this study, we evaluated the effects of TGF-ß1 and -ß2 treatment on miRNA expression in cultured human primary trabecular meshwork cells. Our findings are presented in terms of specific miRNAs (miRNA-centric), but given miRNAs work in networks to control cellular pathways and processes, a pathway-centric view of miRNA action is also reported. Evaluating TGFß-responsive miRNA expression in trabecular meshwork cells will further our understanding of the important pathways and changes involved in the pathogenesis of glaucoma and could lead to the development of miRNAs as new therapeutic modalities in glaucoma.


Asunto(s)
MicroARNs , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Malla Trabecular/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Presión Intraocular/efectos de los fármacos
18.
FASEB J ; 38(10): e23651, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38752537

RESUMEN

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Asunto(s)
Autofagia , Proteína 58 DEAD Box , Glaucoma , Presión Intraocular , Malla Trabecular , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedades de la Aorta , Autofagia/efectos de los fármacos , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Hipoplasia del Esmalte Dental , Glaucoma/patología , Glaucoma/metabolismo , Glaucoma/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Pérdida Auditiva Sensorineural/metabolismo , Interferón beta/metabolismo , Presión Intraocular/genética , Metacarpo/anomalías , Ratones Endogámicos C57BL , Enfermedades Musculares , Mutación , Odontodisplasia , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/patología , Osteoporosis , Linaje , Receptores Inmunológicos , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Calcificación Vascular
19.
Exp Eye Res ; 244: 109939, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789021

RESUMEN

Transforming growth factor-ß2 (TGF-ß2) induced fibrogenic changes in human trabecular meshwork (HTM) cells have been implicated in trabecular meshwork (TM) damage and intraocular pressure (IOP) elevation in primary open-angle glaucoma (POAG) patients. Silibinin (SIL) exhibited anti-fibrotic properties in various organs and tissues. This study aimed to assess the effects of SIL on the TGF-ß2-treated HTM cells and to elucidate the underlying mechanisms. Our study found that SIL effectively inhibited HTM cell proliferation, attenuated TGF-ß2-induced cell migration, and mitigated TGF-ß2-induced reorganization of both actin and vimentin filaments. Moreover, SIL suppressed the expressions of fibronectin (FN), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA) in the TGF-ß2-treated HTM cells. RNA sequencing indicated that SIL interfered with the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, extracellular matrix (ECM)-receptor interaction, and focal adhesion in the TGF-ß2-treated HTM cells. Western blotting demonstrated SIL inhibited the activation of Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and the downstream PI3K/AKT signaling pathways induced by TGF-ß2, potentially contributing to its inhibitory effects on ECM protein production in the TGF-ß2-treated HTM cells. Our study demonstrated the ability of SIL to inhibit TGF-ß2-induced fibrogenic changes in HTM cells. SIL could be a potential IOP-lowering agent by reducing the fibrotic changes in the TM tissue of POAG patients, which warrants further investigation through additional animal and clinical studies.


Asunto(s)
Movimiento Celular , Proliferación Celular , Transducción de Señal , Silibina , Malla Trabecular , Humanos , Antioxidantes/farmacología , Western Blotting , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibrosis , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/patología , Janus Quinasa 2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Silibina/farmacología , Silimarina/farmacología , Factor de Transcripción STAT3/metabolismo , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Malla Trabecular/patología , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo
20.
Trials ; 25(1): 300, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702810

RESUMEN

BACKGROUND: Minimally invasive glaucoma surgery (MIGS) is a new class of surgeries, which combines moderate to high success rates and a high safety profile. Bent Ab interno Needle Goniotomy (BANG) and Gonioscopy-Assisted Transluminal Trabeculotomy (GATT) are two low-cost MIGS procedures that communicate the anterior chamber to Schlemm's canal. Most of the available publications on MIGS are either case series or retrospective studies, with different study protocols. The aim of this manuscript is to describe a randomized clinical trial (RCT) protocol to compare the long-term intraocular pressure (IOP) control and the safety of both procedures in eyes with primary open-angle glaucoma. METHODS: This is a parallel, double-arm, single-masked RCT that includes pseudophakic primary open-angle glaucoma (POAG) eyes. After inclusion criteria, medications will be washed out to verify baseline IOP before surgery. Patients will be randomized to BANG or GATT using a sealed envelope. Follow-up visits will be 1, 7, 15, 30, 60, 90, 180, 330 and 360 days after surgery. On PO330, a new medication washout will be done. The main outcome is the IOP reduction following the procedures. Complimentary evaluation of functional and structural parameters, safety, and quality of life will be done after 30, 90, 180, and 360 days. DISCUSSION: Our study was designed to compare the long-term efficacy and safety of two low-cost MIGS. Most of the published studies on this subject are case series or retrospective cohorts, with different study protocols, which included different types and severities of glaucomas, combined with cataract extraction. Our study only included mild to moderate POAG eyes, with previous successful cataract extraction. Moreover, it provides a standardized protocol that could be replicated in future studies investigating various types of MIGS. This would allow comparison between different techniques in terms of efficacy, safety, and patients' quality of life. TRIAL REGISTRATION: Retrospectively registered at the Registro Brasileiro de Ensaios Clínicos (ReBEC) platform RBR-268ms5y . Registered on July 29, 2023. The study was approved by the Ethics Committee of the University of Campinas, Brazil.


Asunto(s)
Glaucoma de Ángulo Abierto , Gonioscopía , Presión Intraocular , Ensayos Clínicos Controlados Aleatorios como Asunto , Trabeculectomía , Humanos , Glaucoma de Ángulo Abierto/cirugía , Glaucoma de Ángulo Abierto/fisiopatología , Trabeculectomía/métodos , Trabeculectomía/instrumentación , Resultado del Tratamiento , Método Simple Ciego , Masculino , Femenino , Factores de Tiempo , Persona de Mediana Edad , Agujas , Anciano , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA