Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686470

RESUMEN

An easy and versatile method was designed and applied successfully to obtain access to lipase-based cross-linked-enzyme aggregate-like copolymers (CLEA-LCs) using one-pot, consecutive cross-linking steps using two types of homobifunctional cross-linkers (glutaraldehyde and putrescine), mediated with amine activation through pH alteration (pH jump) as a key step in the process. Six lipases were utilised in order to assess the effectiveness of the technique, in terms of immobilization yields, hydrolytic activities, thermal stability and application in kinetic resolution. A good retention of catalytic properties was found for all cases, together with an important thermal and storage stability improvement. Particularly, the CLEA-LCs derived from Candida rugosa lipase showed an outstanding behaviour in terms of thermostability and capability for catalysing the enantioselective hydrolysis of racemic ibuprofen ethyl ester, furnishing the eutomer (S)-ibuprofen with very high conversion and enantioselectivity.


Asunto(s)
Ibuprofeno , Lipasa , Hidrólisis , Aminas , Catálisis , Polímeros
2.
Mater Today Bio ; 12: 100164, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34877519

RESUMEN

Depletion of tumor extracellular matrix (ECM) is viewed as a promising approach to enhance the antitumor efficacy of chemotherapeutic-loaded nanoparticles. Hyaluronidase (HAase) destroys hyaluronic acid-based tumor ECM, but it is active solely at acidic pHs of around 5.0 and is much less active at physiological pH. Herein, we report the development of our novel UV-light-reactive proton-generating and hyaluronidase-loaded albumin nanoparticles (o-NBA/HAase-HSA-NPs). The method to prepare the nanoparticles was based on pH-jump chemistry using o-nitrobenzaldehyde (o-NBA) in an attempt to address the clinical limitation of HAase. When in suspension/PEG-hydrogel and irradiated with UV light, the prepared o-NBA/HAase-HSA-NPs clearly reduced the pH of the surrounding medium to as low as 5.0 by producing protons and were better able to break down HA-based tumor cell spheroids (AsPC-1) and HA-hydrogel/microgels, presumably due to the enhanced HA activity at a more optimal pH. Moreover, when formulated as an intratumor-injectable PEG hydrogel, the o-NBA/HAase-HSA-NPs displayed significantly enhanced tumor suppression when combined with intravenous paclitaxel-loaded HSA-NPs (PTX-HSA-NPs) in AsPC-1 tumor-bearing mice: The tumor volume in mice administered UV-activated o-NBA/HAase-HSA-NPs and PTX-HSA-NPs was 198.2 â€‹± â€‹30.0 â€‹mm3, whereas those administered PBS or non-UV-activated o-NBA/HAase-HSA-NPs and PTX-HSA-NPs had tumor volumes of 1230.2 â€‹± â€‹256.2 and 295.4 â€‹± â€‹17.1 â€‹mm3, respectively. These results clearly demonstrated that when administered with paclitaxel NPs, our photoreactive o-NBA/HAase-HSA-NPs were able to reduce pH and degrade HA-based ECM, and thereby significantly suppress tumor growth. Consequently, we propose our o-NBA/HAase-HSA-NPs may be a prototype for development of future nanoparticle-based HA-ECM-depleting tumor-ablating agents.

3.
Photochem Photobiol Sci ; 20(9): 1173-1181, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34460093

RESUMEN

Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.


Asunto(s)
Proteínas Bacterianas/química , Biliverdina/química , Deinococcus/química , Fitocromo/química , Sitios de Unión , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Protones , Solventes , Espectrofotometría Ultravioleta
4.
J Inorg Biochem ; 203: 110924, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31760234

RESUMEN

Mitochondrial cytochrome c is associated with electron transfer in the respiratory chain and in apoptosis. Four cytochrome c variants have been identified in families that suffer from mild autosomal dominant thrombocytopenia, a platelet disorder associated with increased apoptosis. Three out of the four substitutions, G41S, Y48H and A51V are located on the 40-57 Ω-loop. The G41S and Y48H variants perturb key physicochemical and dynamic properties that result in enhanced functional features associated with apoptotic activity. Herein we characterise the ferric A51V variant. We show by chemical denaturation that this variant causes the native state to be destabilized. Through azide binding kinetics, the population of a pentacoordinate heme form, whereby the Met80 axial ligand is dissociated, is estimated to be of equal magnitude to that found in the Y48H variant. This pentacoordinate form gives rise to peroxidase activity, which despite the similar pentacoordinate population of the A51V variant to that of the Y48H variant, the peroxidase activity of the A51V variant is suppressed. Far-UV circular dichroism spectroscopy and pH jump studies, suggest that a combination of structural and dynamic features in addition to the population of the pentacoordinate form regulate peroxidase activity in these disease variants. Additionally, the steady-state ratio of ferric/ferrous cytochrome c when in turnover with cytochrome c oxidase has been investigated for all 40-57 Ω-loop variants. These studies show that the lower pKa of the alkaline transition for the disease causing variants increases the ferric to ferrous heme ratio, indicating a possible influence on respiration in vivo.


Asunto(s)
Citocromos c/química , Electrones , Simulación de Dinámica Molecular , Mutación Missense , Trombocitopenia/genética , Animales , Apoptosis , Bovinos , Respiración de la Célula , Citocromos c/genética , Citocromos c/metabolismo , Hemo/química , Humanos , Hierro/química , Peroxidasa/metabolismo
5.
Molecules ; 23(4)2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570636

RESUMEN

The present study aimed to develop and optimize liposome formulation for the colonic delivery of biologically active compounds. A strategy to facilitate such targeting is to formulate liposomes with a polymer coating sensitive to the pH shifts in the gastrointestinal tract. To this end, liposomes encapsulating curcumin-chosen as the biologically active compound model-and coated with the pH-responsive polymer Eudragit S100 were prepared and characterized. Curcumin was encapsulated into small unilamellar vesicles (SUVs) by the micelle-to-vesicle transition method (MVT) in a simple and organic solvent-free way. Curcumin-loaded liposomes were coated with Eudragit S100 by a fast and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and curcumin antioxidant activity. In particular, curcumin-loaded liposomes displayed size lower than 100 nm, encapsulation efficiency of 98%, high stability at both 4 °C and 25 °C, high in vitro antioxidant activity, and a cumulative release that was completed within 200 min. A good Eudragit S100 coating which did not alter the properties of the curcumin-loaded liposomes was obtained. The present work therefore provides a fast and solvent-free method to prepare pH-responsive polymer-coated liposomes for the colonic delivery of biologically active compounds.


Asunto(s)
Curcumina/química , Liposomas/química , Polímeros/química , Solventes/química , Sistemas de Liberación de Medicamentos/métodos , Concentración de Iones de Hidrógeno , Ácidos Polimetacrílicos/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 181: 192-199, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28364666

RESUMEN

Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-l-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms.


Asunto(s)
Láseres de Semiconductores , Proteínas/análisis , Espectrofotometría Infrarroja/instrumentación , Espectrofotometría Infrarroja/métodos , Concentración de Iones de Hidrógeno , Cinética , Nanotecnología , Ácido Poliglutámico/química , Conformación Proteica , Pliegue de Proteína , Proteínas/química , Temperatura
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 169: 175-81, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27376757

RESUMEN

Serum albumins present reversible pH dependent conformational transitions. A sudden laser induced pH-jump is a methodology that can provide new insights on localized protein (un)folding processes that occur within the nanosecond to microsecond time scale. To generate the fast pH jump needed to fast-trigger a protein conformational event, a photo-triggered acid generator as o-nitrobenzaldehyde (o-NBA) can be conveniently used. In order to detect potential specific or nonspecific interactions between o-NBA and BSA, we have performed ligand-binding studies using fluorescence spectroscopy, saturation transfer difference (STD) NMR, molecular docking and semi-empirical calculations. Fluorescence quenching indicates the formation of a non-fluorescent complex in the ground-state between the fluorophore and the quencher, but o-NBA does not bind much effectively to the protein (Ka~4.34×10(3)M(-1)) and thus can be considered a relatively weak binder. The corresponding thermodynamic parameters: ΔG°, ΔS° and ΔH° showed that the binding process is spontaneous and entropy driven. Results of (1)H STD-NMR confirm that the photo-acid and BSA interact, and the relative intensities of the signals in the STD spectra show that all o-NBA protons are equally involved in the binding process, which should correspond to a nonspecific interaction. Molecular docking and semi-empirical calculations suggest that the o-NBA binds preferentially to the Trp-212-containing site of BSA (FA7), interacting via hydrogen bonds with Arg-217 and Tyr-149 residues.


Asunto(s)
Benzaldehídos/metabolismo , Albúmina Sérica Bovina/metabolismo , Animales , Benzaldehídos/química , Sitios de Unión , Bovinos , Entropía , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia
8.
J Agric Food Chem ; 64(20): 4139-45, 2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-27124576

RESUMEN

Delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside are the main anthocyanins of Hibiscus sabdariffa calyces, traditionally used to make a bright red beverage by decoction in water. At natural pH, these anthocyanins are mainly in their flavylium form (red) in equilibrium with the quinonoid base (purple) and the hemiketal (colorless). For the first time, their acidity and hydration equilibrium constants were obtained from a pH-jump method followed by UV-vis spectroscopy as a function of temperature from 4 to 37 °C. Equilibrium constant determination was also performed by multivariate curve resolution (MCR). Acidity and hydration constants of cyanidin-3-O-sambubioside at 25 °C were 4.12 × 10(-5) and 7.74 × 10(-4), respectively, and were significantly higher for delphinidin-3-O-sambubioside (4.95 × 10(-5) and 1.21 × 10(-3), respectively). MCR enabled the obtaining of concentration and spectrum of each form but led to overestimated values for the equilibrium constants. However, both methods showed that formations of the quinonoid base and hemiketal were endothermic reactions. Equilibrium constants of anthocyanins in the hibiscus extract showed comparable values as for the isolated anthocyanins.


Asunto(s)
Antocianinas/química , Hibiscus/química , Extractos Vegetales/química , Disacáridos , Flores/química , Concentración de Iones de Hidrógeno , Cinética , Análisis Espectral , Temperatura
9.
ACS Nano ; 10(4): 4199-208, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-26953516

RESUMEN

We report herein the design of a light-responsive gatekeeper for smart nitric oxide (NO) delivery. The gatekeeper is composed of a pH-jump reagent as an intermediary of stimulus and a calcium phosphate (CaP) coating as a shielding layer for NO release. The light irradiation and subsequent acid generation are used as triggers for uncapping the gatekeeper and releasing NO. The acids generated from a light-activated pH-jump agent loaded in the mesoporous nanoparticles accelerated the degradation of the CaP-coating layers on the nanoparticles, facilitating the light-responsive NO release from diazeniumdiolate by exposing a NO donor to physiological conditions. Using the combination of the pH-jump reagent and CaP coating, we successfully developed a light-responsive gatekeeper system for spatiotemporal-controlled NO delivery.

10.
J Photochem Photobiol B ; 154: 16-23, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26613347

RESUMEN

The fluorescence of the four tyrosines of α-synuclein (Syn) was used for probing the earliest events preceding the fibrillation of Syn, during the onset of the so-called lag-time of fibrillation. Steady-state fluorescence experiments revealed an increase in the fluorescence intensity (FI) for Syn solutions at pH values 3 and 2, in comparison with pH7, and fluorescence decays indicated that the FI increase did not result from suppression of excited-state proton transfer from the tyrosines to aspartates and glutamates, exposure of tyrosines to more hydrophobic environments, or reduction of homo-energy transfer. Instead, the FI increase was due to changes in the population of the tyrosine rotamers at low pH values. Stopped-flow experiments (pH-jumps) showed that the FI enhancement involves two processes: a fast (sub-7 ms) intramolecular (concentration-independent) process, which we assign to the protein collapse at low pH, and a slower intermolecular (concentration-dependent) process of protein dimerization/oligomerization, starting at 4-10s after acidification. To the best of our knowledge, this is the first work on the experimental detection of these earliest processes in the fibrillation of Syn.


Asunto(s)
Colorantes Fluorescentes/química , Tirosina/química , alfa-Sinucleína/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Multimerización de Proteína , Protones , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Espectrofotometría Ultravioleta , alfa-Sinucleína/química , alfa-Sinucleína/genética
11.
Sci Technol Adv Mater ; 13(6): 064202, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27877529

RESUMEN

We demonstrate a timed explosive drug release from smart pH-responsive hydrogels by utilizing a phototriggered spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (o-NBA) was integrated into poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. o-NBA-hydrogels demonstrated the rapid release of protons upon UV irradiation, allowing the pH inside the gel to decrease to below the pKa value of P(NIPAAm-co-CIPAAm). The generated protons diffused gradually toward the non-illuminated area, and the diffusion kinetics could be controlled by adjusting the UV irradiation time and intensity. After irradiation, we observed the enhanced release of entrapped L-3,4-dihydroxyphenylalanine (DOPA) from the gels, which was driven by the dissociation of DOPA from CIPAAm. Local UV irradiation also triggered the release of DOPA from the non-illuminated area in the gel via the diffusion of protons. Conventional systems can activate only the illuminated region, and their response is discontinuous when the light is turned off. The ability of the proposed pH-jump system to permit gradual activation via proton diffusion may be beneficial for the design of predictive and programmable devices for drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA