Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Foods ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38890929

RESUMEN

In the Chilean population, calcium consumption is deficient. Therefore, several strategies have been implemented to increase calcium intake, such as consuming dairy products and supplements. In this study, an ingredient composed of bone flour (BF) and protein hydrolysate (PH) obtained from salmon frame was used as an innovative source of calcium. The objective was to evaluate the effect of the incorporation of BF and PH in a 1:1 ratio (providing two calcium concentrations to the nuggets, 75 and 125 mg/100 g) on calcium content and sensory attributes of salmon nuggets submitted to baking or shallow frying. Proximal chemical analyses, fatty acid composition, calcium content, and sensory evaluation (acceptability and check-all-that-apply test) were tested in the nuggets. The incorporation of BF/PH (1:1) in both concentrations increased the calcium content of salmon nuggets being higher for the 125 mg/100 g. On the other hand, no negative effects were observed on sensory properties where all samples showed good overall acceptability for baked and fried nuggets. Therefore, the incorporation of BF/PH (1:1) into salmon nuggets enhances the nutritional quality of these products by providing a higher calcium content without significantly affecting their sensory properties.

2.
Environ Sci Pollut Res Int ; 31(18): 26737-26746, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456978

RESUMEN

Protein hydrolysates might display diverse bioactivities with potential relevance to human and animal health and food technology. Enzymatic hydrolysis of agro-industrial by-products is increasingly focused. In this study, a crude protease from Bacillus sp. CL18 was applied to obtain antioxidant protein hydrolysates from porcine, bovine, poultry, and fish by-products. The crude enzyme hydrolyzed all the twelve investigated by-products, as detected by increased soluble protein contents after 4 h of proteolysis. Hydrolysates exhibited higher radical-scavenging, Fe2+-chelating and reducing power capacities than non-hydrolyzed by-products. Hydrolysis times (0-8 h) and enzyme-to-substrate (E/S) ratios (384, 860, and 1,400 U/g) were assessed to produce antioxidant bovine lung hydrolysates. The highest E/S ratio accelerated both hydrolysis and increases in antioxidant activities; however, it did not result in bioactivities higher than hydrolysates obtained with the intermediate E/S ratio. Optimal antioxidant activities could be reached after 6 h of hydrolysis using 860 U/g. Animal by-products are interesting sources of bioactive protein hydrolysates, which could be produced with a non-commercial bacterial protease. This might represent a promising strategy for the valorization of animal by-products generated in large amounts by the agri-food sector.


Asunto(s)
Antioxidantes , Bacillus , Péptido Hidrolasas , Hidrolisados de Proteína , Antioxidantes/metabolismo , Animales , Péptido Hidrolasas/metabolismo , Hidrólisis , Bovinos , Porcinos
3.
Mol Nutr Food Res ; 67(21): e2300047, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667444

RESUMEN

SCOPE: Quinoa intake exerts hypoglycemic and hypolipidemic effects in animals and humans. Although peptides from quinoa inhibit key enzymes involved in glucose homeostasis in vitro, their in vivo antidiabetic properties have not been investigated. METHODS AND RESULTS: This study evaluated the effect of oral administration of a quinoa protein hydrolysate (QH) produced through enzymatic hydrolysis and fractionation by electrodialysis with ultrafiltration membrane (EDUF) (FQH) on the metabolic and pregnancy outcomes of Lepdb/+ pregnant mice, a preclinical model of gestational diabetes mellitus. The 4-week pregestational consumption of 2.5 mg mL-1 of QH in water prevented glucose intolerance and improves hepatic insulin signaling in dams, also reducing fetal weights. Sequencing and bioinformatic analyses of the defatted FQH (FQHD) identified 11 peptides 6-10 amino acids long that aligned with the quinoa proteome and exhibited putative anti-dipeptidyl peptidase-4 (DPP-IV) activity, confirmed in vitro in QH, FQH, and FDQH fractions. Peptides homologous to mouse and human proteins enriched for biological processes related to glucose metabolism are also identified. CONCLUSION: Processing of quinoa protein may be used to develop a safe and effective nutritional intervention to control glucose intolerance during pregnancy. Further studies are required to confirm if this nutritional intervention is applicable to pregnant women.


Asunto(s)
Chenopodium quinoa , Diabetes Gestacional , Intolerancia a la Glucosa , Humanos , Ratones , Femenino , Animales , Embarazo , Diabetes Gestacional/terapia , Hidrolisados de Proteína/química , Ultrafiltración , Hipoglucemiantes , Péptidos/química
4.
Photodermatol Photoimmunol Photomed ; 39(1): 51-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35801374

RESUMEN

BACKGROUND: Ultraviolet B (UVB) causes photoaging of the skin, the appearance of wrinkles, spots, and alteration of the skin barrier. The main cells in the most superficial layer of the skin are the keratinocytes; these cells play an important role in protecting this organ. OBJECTIVE: The present study aimed to investigate the antioxidant activity of the hydrolysates from kafirin to inhibit UVB-induced responses in human keratinocytes cells (HaCaT). METHODS: Kafirin hydrolysates were produced by enzymatic hydrolysis with alcalase. The activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), in the HaCaT cell line in the presence of UVB and the effects of the hydrolysates against the UVB-induced response were evaluated. Furthermore, the peptides that were generated by hydrolysis were identified in silico using the BIOPEP database. RESULTS: Two protein sequences were identified (α-kafirin and the precursor protein of α-kafirin), in the kafirin extract. A degree of hydrolysis of 18.8% was obtained by hydrolyzing the kafirin extract with alcalase. The kafirin hydrolysates avoided the decrease in endogenous antioxidant enzymes such as SOD, CAT, and GPx reducing the oxidative stress generated by UVB. Using the BIOPEP-UWM database, we found 102 peptide sequences, and it has shown that the peptides have a large amount of hydrophobic amino acids such as proline, alanine, and glutamine, and amino acids with high antioxidant capacity. CONCLUSION: These results suggest that the kafirin hydrolysates can be used as antioxidant agents to ameliorate UVB-induced skin keratinocytes cells' response in vitro, providing an alternative against UVB-induced photoaging.


Asunto(s)
Antioxidantes , Queratinocitos , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Queratinocitos/metabolismo , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Superóxido Dismutasa/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacología , Rayos Ultravioleta/efectos adversos
5.
Prep Biochem Biotechnol ; 53(1): 12-21, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35156901

RESUMEN

Bacillus sp. CL14 crude protease was partially characterized and applied to obtain antioxidant whey protein isolate (WPI) hydrolysates. Optimal activity occurred at pH 9.0 and 60 °C. Ca2+, Mg2+, and Mn2+ (5 mM) enhanced activity (12-26%), whereas Co2+, Cu2+, Fe2+, and Zn2+ inhibited it (50-94%). At 1% (v/v), Tween 20 and Triton X-100 enhanced activities (21-27%), ß-mercaptoethanol decreased it (15%), and dimethyl sulfoxide (DMSO) had no effect. Sodium dodecyl sulfate (SDS; 0.1%, w/v) increased activity by 36%. Complete inhibition by phenylmethylsulfonyl fluoride (PMSF), and 85% inhibition by ethylenediaminotetraacetic acid, indicates its serine protease character and the importance of cations for activity/stability. With 5 mM Ca2+, protease was optimally active at 65 °C and completely stable after 20 min at 40-55 °C. Crude protease preferentially hydrolyzed WPI and soy protein, followed by casein. WPI hydrolysis was then performed (55 °C, pH 9.0, 5 mM Ca2+) for 0-180 min. Contents of trichloroacetic acid (TCA)-soluble proteins in WPI hydrolysates (HWPI) increased from 29% (0 min) to 50-52% (60-180 min), accompanied by enhanced radical scavenging activity (14%, 0 min; ∼34%, 60-180 min) and Fe2+-chelating ability (56%, 0 min; ∼74%, 45-180 min). CL14 protease might represent an alternative biocatalyst to obtain antioxidant hydrolysates from WPI and, potentially, from other food proteins.


Asunto(s)
Antioxidantes , Endopeptidasas , Proteína de Suero de Leche , Antioxidantes/farmacología , Antioxidantes/química , Endopeptidasas/química , Serina Proteasas , Hidrólisis , Bacterias/metabolismo , Concentración de Iones de Hidrógeno , Hidrolisados de Proteína/química
6.
Foods ; 11(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36010429

RESUMEN

Hydrolysis of proteins leads to the release of bioactive peptides with positive impact on human health. Peptides exhibiting antihypertensive properties (i.e., inhibition of angiotensin-I-converting enzyme) are commonly found in whey protein hydrolysates made with enzymes of animal, plant or microbial origin. However, bioactive properties can be influenced by processing conditions and gastrointestinal digestion. In this study, we evaluated the impact of three plant enzymes (papain, bromelain and ficin) in the manufacture of whey protein hydrolysates with varying level of pH, enzyme-to-substrate ratio and time of hydrolysis, based on a central composite design, to determine the degree of hydrolysis and antihypertensive properties. Hydrolysates made on laboratory scales showed great variation in the type of enzyme used, their concentrations and the pH level of hydrolysis. However, low degrees of hydrolysis in papain and bromelain treatments were associated with increased antihypertensive properties, when compared to ficin. Simulated gastrointestinal digestion performed for selected hydrolysates showed an increase in antihypertensive properties of hydrolysates made with papain and bromelain, which was probably caused by further release of peptides. Several peptides with reported antihypertensive properties were found in all treatments. These results suggest plant enzymes used in this study can be suitable candidates to develop ingredients with bioactive properties.

7.
Foods ; 11(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35407104

RESUMEN

Supercritical fluids' extraction (SFE) and conventional solvent extraction (CSE) for defatting of quinoa flour as pretreatments to produce the quinoa protein hydrolysate (QPH) were studied. The objective was to extract the oil and separate the phenolic compounds (PC) and the defatted quinoa flour for subsequent quinoa protein extraction and enzymatic hydrolysis. The oil extraction yield (OEY), total flavonoid content (TFC), and QPH yield were compared. SuperPro Designer 9.0® software was used to estimate the cost of manufacturing (COM), productivity, and net present value (NPV) on laboratory and industrial scales. SFE allows higher OEY and separation of PC. The SFE oil showed a higher OEY (99.70%), higher antioxidant activity (34.28 mg GAE/100 g), higher QPH yield (197.12%), lower COM (US$ 90.10/kg), and higher NPV (US$ 205,006,000) as compared to CSE (with 77.59%, 160.52%, US$ 109.29/kg, and US$ 28,159,000, respectively). The sensitivity analysis showed that the sale of by-products improves the economic results: at the industrial scale, no significant differences were found, and both processes are economically feasible. However, results indicate that SFE allows the recovery of an oil and QPH of better nutritional quality and a high level of purity-free organic solvents for further health and nutraceutical uses.

8.
J Food Biochem ; 46(1): e14016, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34811749

RESUMEN

A crude extract with proteolytic activity was prepared from edible fruits of Bromelia serra, containing cysteine peptidases with molecular masses between 24.1 and 25.9 kDa. The extract presented an optimal pH range of 6.03-9.05, retained more than 80% of activity after thermal pre-treatments at 23, 37, and 45°C (120 min), but it was rapidly inactivated after 10 min at 75°C. These proteases were employed to hydrolyze soybean proteins, bovine casein and bovine whey, achieving degrees of hydrolysis of 18.3 ± 0.6, 29.1 ± 0.7, and 12.6 ± 0.9% (55°C, 180 min), respectively. The casein 180 min-hydrolysate (55°C) presented the maximum value of antioxidant activity (2.89 ± 0.12 mg/mL Trolox), and the whey protein 180 min-hydrolysate (55°C) showed the highest percentage of angiotensin-converting enzyme inhibition (91.9 ± 1.2%). This low-cost enzymatic preparation would be promising for the food industry because it requires mild working conditions and yields hydrolysates with biological activities useful as ingredients for functional food. PRACTICAL APPLICATION: Proteolytic enzymes are employed in the food industry in a wide variety of processes since they modify the properties of proteins causing beneficial effects such as improvement digestibility, diminution of allergenicity, and release of bioactive peptides. Fruits from Bromelia serra possess cysteine peptidases that could be used in food biotechnology because they are capable to hydrolyze soybean and milk proteins by mild working conditions and to provoke the release of bioactive peptides. These hydrolysates containing antioxidative and ACE-inhibitor activities would be useful as ingredients for functional foods or as nutraceuticals, which are nowadays two products highly required by consumers.


Asunto(s)
Bromelia , Animales , Bromelia/metabolismo , Bovinos , Frutas/metabolismo , Péptido Hidrolasas , Péptidos/química
9.
Antioxidants (Basel) ; 10(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34679702

RESUMEN

The aim of the present work was to fortify yogurt by adding a stripped weakfish (Cynoscion guatucupa) protein hydrolysate obtained with the enzyme Protamex and microencapsulated by spray drying, using maltodextrin (MD) as wall material. The effects on the physicochemical properties, syneresis, texture, viscoelasticity, antioxidant and ACE inhibitory activities of yogurt after 1 and 7 days of storage were evaluated. In addition, microbiological and sensory analyses were performed. Four yogurt formulations were prepared: control yogurt (without additives, YC), yogurt with MD (2.1%, YMD), with the free hydrolysate (1.4%, YH) and the microencapsulated hydrolysate (3.5%, YHEn). Yogurts to which free and microencapsulated hydrolysates were added presented similar characteristics, such as a slight reduction in pH and increased acidity, with a greater tendency to present a yellow color compared with the control yogurt. Moreover, they showed less syneresis, the lowest value being that of YHEn, which also showed a slight increase in cohesiveness and greater rheological stability after one week of storage. All yogurts showed high counts of the microorganisms used as starters. The hydrolysate presence in both forms resulted in yogurts with antioxidant activity and potent ACE-inhibitory activity, which were maintained after 7 days of storage. The incorporation of the hydrolysate in the microencapsulated form presented greater advantages than the direct incorporation, since encapsulation masked the fishy flavor of the hydrolysate, resulting in stable and sensorily acceptable yogurts with antioxidant and ACE inhibitory activities.

10.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641147

RESUMEN

In this study, chitosan nanoparticles (CNPs) were prepared by the ionic gelation technique with tripolyphosphate (TPP), and the effect of CNP composition and physicochemical characteristics were evaluated. After the synthesis optimization, CNPs were used as carriers for a fish protein hydrolysate (FPH) with bioactive properties (CNPH). The physicochemical characteristics, antioxidant capacity and antimicrobial, antihypertensive and emulsifier properties of unloaded and loaded CNPs in a food system model were studied. CNPH showed a uniform particle distribution, size ~200 nm, high stability (zeta potential around 30 mV), radical scavenging activity and increased antimicrobial activity against Staphylococcus aureus, Shigella sonnei and Aeromonas hydrophila. Additionally, CNPH showed an angiotensin I-converting enzyme (ACE)-inhibitory activity of 63.6% and, when added to a food emulsion model, this system containing CNPs, with or without FHP, exhibited improved food emulsion stability. Thus, CNPs were able to carry the FPH while maintaining their bioactive properties and can be an alternative to the delivery of bioactive peptides with potential as an emulsion stabilizer for food applications.

11.
Foods ; 10(9)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34574209

RESUMEN

High Intensity Ultrasound (HIUS) can induce modification of the protein structure. The combination of enzymatic hydrolysis and ultrasound is an interesting strategy to improve the release of the Angiotensin-Converting Enzyme (ACE) inhibitory peptides. In this study, whey proteins were pretreated with HIUS at two levels of amplitude (30 and 50%) for 10 min, followed by hydrolysis using the vegetable protease bromelain. The hydrolysates obtained were ultrafiltrated and their fractions were submitted to a simulated gastrointestinal digestion. The conformational changes induced by HIUS on whey proteins were analyzed using Fourier-transform infrared spectroscopy by attenuated total reflectance (FTIR-ATR) and intrinsic spectroscopy. It was found that both levels of ultrasound pretreatment significantly decreased the IC50 value (50% Inhibitory Concentration) of the hydrolysates in comparison with the control (α = 0.05). After this treatment, HIUS-treated fractions were shown as smaller in size and fractions between 1 and 3 kDa displayed the highest ACE inhibition activity. HIUS promoted significant changes in whey protein structure, inducing, unfolding, and aggregation, decreasing the content of α-helix, and increasing ß-sheets structures. These findings prove that ultrasound treatment before enzymatic hydrolysis is an innovative and useful strategy that modifies the peptide profile of whey protein hydrolysates and enhances the production of ACE inhibitory peptides.

12.
J Genet Eng Biotechnol ; 19(1): 107, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34292436

RESUMEN

BACKGROUND: Argentina's geothermal areas are niches of a rich microbial diversity. In 2020, species of Bacillus cytotoxicus were isolated for the first time from these types of pristine natural areas. Bacillus cytotoxicus strains demonstrated the capability to grow and degrade chicken feathers with the concomitant production of proteases with keratinolytic activity, enzymes that have multitude of industrial applications. The aim of this research was to study the production of the proteolytic enzymes and its characterization. Also, feather protein hydrolysates produced during fermentation were characterized. RESULTS: Among the thermotolerant strains isolated from the Domuyo geothermal area (Neuquén province, Argentina), Bacillus cytotoxicus LT-1 and Oll-15 were selected and put through submerged cultures using feather wastes as sole carbon, nitrogen, and energy source in order to obtain proteolytic enzymes and protein hydrolysates. Complete degradation of feathers was achieved after 48 h. Zymograms demonstrated the presence of several proteolytic enzymes with an estimated molecular weight between 50 and > 120 kDa. Optimum pH and temperatures of Bacillus cytotoxicus LT-1 crude extract were 7.0 and 40 °C, meanwhile for Oll-15 were 7.0 and 50 °C. Crude extracts were inhibited by EDTA and 1,10 phenanthroline indicating the presence of metalloproteases. Feather protein hydrolysates showed an interesting antioxidant potential measured through radical-scavenging and Fe3+-reducing activities. CONCLUSION: This work represents an initial approach on the study of the biotechnological potential of proteases produced by Bacillus cytotoxicus. The results demonstrated the importance of continuous search for new biocatalysts with new characteristics and enzymes to be able to cope with the demands in the market.

13.
J Mass Spectrom ; 56(2): e4701, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33480451

RESUMEN

We describe a fast (5 min) liquid chromatography tandem mass spectrometry method (LC-MS/MS) based on a 46 Da neutral loss of formic acid (H2 O and CO) to identify tri- and dipeptides (DIPEP) in whey protein and porcine liver protein hydrolysates and confirmed by further de novo sequencing. Sample solutions were acidified to favor [dipep + H]+ ions, and a m/z range of 50-300 was used to improve sensitivity. All dipeptide candidates were selected based on all possibilities of the 20 amino acid combinations, and their collision-induced dissociation fragments were screened via de novo sequencing. To determine their biological activities, sequenced dipeptides were compared with the Biopep database and other data from literature. Altogether, 18 dipeptides and 7 tripeptides were identified from the whey protein hydrolysate; they seemed to be broadly active, and peptides were identified as active dipeptidyl peptidase IV inhibitors and active angiotensin-converting enzyme (ACE), according to available information. Porcine liver hydrolysate showed 14 dipeptides which exhibit similar biological activities to whey protein hydrolysate.


Asunto(s)
Hígado/química , Oligopéptidos/análisis , Hidrolisados de Proteína/análisis , Espectrometría de Masas en Tándem/métodos , Proteína de Suero de Leche/análisis , Animales , Cromatografía Liquida/métodos , Oligopéptidos/química , Hidrolisados de Proteína/química , Análisis de Secuencia de Proteína , Porcinos , Proteína de Suero de Leche/química
14.
Appl Biochem Biotechnol ; 193(3): 619-636, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33047217

RESUMEN

Our objective was to isolate peptidases from the latex of Maclura pomifera fruits and use them to hydrolyze food proteins, as well as to purify and characterize the main peptidase. Two partially purified proteolytic extracts were prepared by ethanol (EE) and acetone (AE) precipitation from an aqueous suspension of exuded fruit latex. EE was used to hydrolyze food proteins with a ratio of 0.19 caseinolytic units (Ucas) per mg of substrate. Different values of hydrolysis degree were observed for hydrolysates of egg white, soy protein isolate, and casein at 180 min (9.3%, 31.1%, and 29.1%, respectively). AE was employed to purify a peptidase which exhibited an isoelectric point (pI) of 8.70 and whose abundance in AE was 28.3%. This enzyme was purified to homogeneity using a single-step procedure by cation-exchange chromatography, achieving an 8.1-fold purification and a yield of 16.7%. The peptidase was named pomiferin I and showed a molecular mass of 63,177.77 Da. Kinetic constants (KM 0.84 mM, Vmax 27.50 uM s-1, kcat 72.37 s-1, and kcat/KM 86.15 mM-1 s-1) were determined employing N-α-carbobenzoxy-L-alanyl-p-nitrophenyl ester as substrate. Analysis by PMF showed only partial homology of pomiferin I with a serine peptidase from a species of the same family.


Asunto(s)
Proteínas en la Dieta/química , Frutas/enzimología , Maclura/enzimología , Péptido Hidrolasas , Proteínas de Plantas , Hidrolisados de Proteína/química , Cromatografía por Intercambio Iónico , Péptido Hidrolasas/química , Péptido Hidrolasas/aislamiento & purificación , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación
15.
Foods ; 9(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036372

RESUMEN

For many years, it was believed that only amino acids, dipeptides, and tripeptides could be absorbed and thus reach the bloodstream. Nowadays, the bioavailability of oligopeptides is also considered possible, leading to new research. This pilot study investigates the activity of brush border enzymes on undigested whey protein hydrolysate (WPH) and on simulated intestinal digested (ID) whey hydrolysate and the subsequent absorption of resultant peptides through the proximal jejunum of a 7-week old piglet setup in an Ussing chamber model. Amongst all samples taken, 884 oligopeptides were identified. The brush border peptidase activity was intense in the first 10 min of the experiment, producing several new peptides in the apical compartment. With respect to the ID substrate, 286 peptides were detected in the basolateral compartment after 120 min of enzyme activity, originating from ß-lactoglobulin (60%) and ß-casein (20%). Nevertheless, only 0.6 to 3.35% of any specific peptide could pass through the epithelial barrier and thus reach the basolateral compartment. This study demonstrates transepithelial jejunum absorption of whey oligopeptides in an ex vivo model. It also confirmed the proteolytic activity of brush border enzymes on these oligopeptides, giving birth to a myriad of new bioactive peptides available for absorption.

16.
Appl Biochem Biotechnol ; 192(2): 643-664, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32504245

RESUMEN

Microbial proteases are relevant biocatalysts with diverse applications. Production of protein hydrolysates is recently focused, since they might display biological activities. Therefore, the extracellular protease from Bacillus sp. CL18 was partially purified through ammonium sulfate precipitation (25-50% saturation) and gel filtration chromatography, with a 60.7-fold purification (40,593 U/mg protein) and 21.3% recovery. The partially purified protease (PPP) was characterized as a serine protease, with optimal activity at 51-59 °C and pH 7.4-8.8 and low thermal stability. Thermal inactivation followed first-order kinetics. PPP depended on Ca2+ for higher thermal stability, depicted by increases in half-lives (t1/2), activation energy (Ea), and free energy (ΔG#) for kinetic inactivation. PPP preferentially hydrolyzed casein > soy protein isolate (SPI) >>> keratinous materials. SPI hydrolysis by PPP was further investigated, and the obtained hydrolysates exhibited increased in vitro bioactivities. Hydrolysates displayed antioxidant capacities through the scavenging of synthetic organic radicals and Fe3+-reducing ability. In addition, hydrolysates inhibited the activities of dipeptidyl peptidase IV (DPP IV) and angiotensin-converting enzyme (ACE), suggesting antidiabetic and antihypertensive potentials, respectively. From its biochemical properties, PPP might be used to produce protein hydrolysates with multifunctional bioactivities. Both PPP and SPI hydrolysates can find applications in food biotechnology.


Asunto(s)
Bacillus/enzimología , Péptido Hidrolasas/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacología , Proteínas de Soja/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Activación Enzimática , Hidrólisis , Cinética , Péptido Hidrolasas/química , Péptido Hidrolasas/aislamiento & purificación , Temperatura
17.
Molecules ; 25(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272799

RESUMEN

The production of bioactive peptides from organic by-waste materials is in line with current trends devoted to guaranteeing environmental protection and a circular economy. The objectives of this study were i) to optimize the conditions for obtaining bioactive hydrolysates from chicken combs and wattles using Alcalase, ii) to identify the resulting peptides using LC-ESI-MS2 and iii) to evaluate their chelating and antioxidant activities. The hydrolysate obtained using a ratio of enzyme to substrate of 5% (w/w) and 240 min of hydrolysis showed excellent Fe2+ chelating and antioxidant capacities, reducing Fe3+ and inhibiting 2, 2'-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The mapping of ion distribution showed that a high degree of hydrolysis led to the production of peptides with m/z ≤ 400, suggesting low mass peptides or peptides with multiple charge precursor ions. The peptides derived from the proteins of cartilage like Collagen alpha-2(I), Collagen alpha-1(I), Collagen alpha-1(III) and elastin contributed to generation of bioactive compounds. Hydrolysates from chicken waste materials could be regarded as candidates to be used as ingredients to design processed foods with functional properties.


Asunto(s)
Cresta y Barbas/efectos de los fármacos , Cresta y Barbas/metabolismo , Hidrólisis/efectos de los fármacos , Péptidos/farmacología , Animales , Antioxidantes/farmacología , Benzotiazoles/farmacología , Compuestos de Bifenilo/farmacología , Pollos , Cromatografía Liquida/métodos , Colágeno/metabolismo , Elastina/metabolismo , Espectrometría de Masas/métodos , Picratos/farmacología , Hidrolisados de Proteína/metabolismo , Subtilisinas/metabolismo , Ácidos Sulfónicos/farmacología
18.
J Sci Food Agric ; 99(8): 4167-4173, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30779130

RESUMEN

BACKGROUND: Mucuna pruriens L. is a legume sown in the Mexican southeast with an important protein content. Studies have shown the potential use of by-products derived from Mucuna as a functional food because of the hypoglycemic and antihypertensive activities. Thus, this study aims to assess the antioxidant and protective effect of the peptide fractions derived from M. pruriens L., in vitro on the HeLa cell line. An enzymatic hydrolysis with pepsin-pancreatin was performed on the total protein concentrate, from which five peptide fractions were obtained. RESULTS: All protein derivatives from M. pruriens L., except F5-10 kDa, decreased the hydrogen peroxide production by more than 50%. The highest antioxidant activity was exhibited by F1-3 kDa, which lowered the intracellular reactive oxygen species by 207 ± 4.20%. No significant differences were found in the protective effects of the protein hydrolysate, F5-10 kDa, F3-5 kDa and F1-3 kDa relative to the N-acetylcysteine control group. CONCLUSION: This elucidated the potential action mechanisms of M. pruriens L. protein derivatives for future investigations and their role in the prevention and treatment of oxidative stress. © 2019 Society of Chemical Industry.


Asunto(s)
Antioxidantes/farmacología , Mucuna/química , Péptidos/farmacología , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Hidrólisis , Estrés Oxidativo/efectos de los fármacos , Péptidos/química , Péptidos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Proteínas de Plantas/química , Proteínas de Plantas/farmacología
19.
N Biotechnol ; 49: 71-76, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30223040

RESUMEN

Feather hydrolysates were obtained through submerged cultivation of 50 g/L feathers with Chryseobacterium sp. kr6. Culture supernatants, displaying antioxidant properties, as evaluated by the 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging method, were partially purified by gel-filtration chromatography. Fractions showing scavenging activity were pooled, lyophilized and tested at different concentrations (0.1-1.0 mg/mL) by the total reactive antioxidant potential (TRAP) method, showing promising antioxidant capacities. Antioxidant activities of the partially purified feather hydrolysate (PPFH; 24.5 µg) were demonstrated by its ability to scavenge hydroxyl radicals and to inhibit lipid peroxidation. In addition, PPFH (0.24-24.5 µg) was found to reduce ferric ion (Fe3+), but did not display Fe2+-chelating activity. Thus, the main antioxidant activities could be related to the donation of hydrogen atoms, electron transfer and scavenging of hydroxyl radicals. PPFH was analyzed by mass spectrometry and five peptides were identified and chemically synthesized. The antioxidant activity of one peptide LPGPILSSFPQ was confirmed by ABTS and TRAP. The structure of this keratin-derived bioactive peptide has not been previously described.


Asunto(s)
Antioxidantes/química , Plumas/química , Queratinas/química , Péptidos/química , Hidrolisados de Proteína/química , Secuencia de Aminoácidos , Animales , Pollos , Depuradores de Radicales Libres/química , Radical Hidroxilo/química , Peroxidación de Lípido
20.
Braz. J. Pharm. Sci. (Online) ; 55: e18304, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1039081

RESUMEN

Today, consumers are looking for functional foods that promote health and prevent certain diseases in addition to provide nutritional requirements. This study aimed to evaluate the antioxidant and cytotoxic properties of Liza klunzingeri protein hydrolysates. Fish protein hydrolysates (FPHs) were prepared from L. klunzingeri muscle using enzymatic hydrolysis with papain at enzyme/substrate ratios of 1:25 and 1:50 for 45, 90 and 180 min. The antioxidant activities of the FPHs were investigated through five antioxidant assays. The cytotoxic effects on 4T1 carcinoma cell line were also evaluated. The amino acid composition and molecular weight distribution of the hydrolysate with the highest antioxidant activity were determined by HPLC. All six FPHs exhibited good scavenging activity on ABTS (IC50=0.60-0.12 mg/mL), DPPH (IC50= 3.18-2.08 mg/mL), and hydroxyl (IC50=4.13-2.07 mg/mL) radicals. They also showed moderate Fe+2 chelating capacity (IC50=2.12-12.60 mg/mL) and relatively poor ferric reducing activity (absorbance at 70 nm= 0.01-0.15, 5 mg/mL). In addition, all hydrolysates showed cytotoxic activities against the 4T1 cells (IC50=1.62-2.61 mg/mL). 94.6% of peptide in hydrolysate with the highest antioxidant activity had molecular weight less than 1,000 Da. L. klunzingeri protein hydrolysates show significant antioxidant and anticancer activities in vitro and are suggested to be used in animal studies.


Asunto(s)
Smegmamorpha/anatomía & histología , Citotoxinas/efectos adversos , Antioxidantes/análisis , Hidrolisados de Proteína/farmacocinética , Técnicas In Vitro/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA