Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.342
Filtrar
1.
J Environ Sci (China) ; 147: 230-243, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003043

RESUMEN

Enhancing soil organic matter characteristics, ameliorating physical structure, mitigating heavy metal toxicity, and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate. The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation. Despite this, there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation. The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate, under the combined effects of biomass co-smoldering pyrolysis and plant colonization. The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects, which enhance the physical and chemical properties of tailings, while simultaneously accelerating the rate of mineral weathering. Notable improvements include the amelioration of extreme pH levels, nutrient enrichment, the formation of aggregates, and an increase in enzyme activity, all of which collectively demonstrate the successful attainment of tailings substrate reconstruction. Evidence of the accelerated weathering was verified by phase and surface morphology analysis using X-ray diffraction and scanning electron microscopy. Discovered corrosion and fragmentation on the surface of minerals. The weathering resulted in corrosion and fragmentation of the surface of the treated mineral. This study confirms that co-smoldering pyrolysis of biomass, combined with plant colonization, can effectively promote the transformation of tailings into soil-like substrates. This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.


Asunto(s)
Biomasa , Minería , Contaminantes del Suelo , Suelo , Suelo/química , Pirólisis , Plantas , Biodegradación Ambiental
2.
J Environ Sci (China) ; 147: 652-664, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003080

RESUMEN

Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.


Asunto(s)
Restauración y Remediación Ambiental , Oxígeno , Petróleo , Contaminantes del Suelo , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Adsorción , Aguas Residuales/química , Oxígeno/química , Oxígeno/análisis , Eliminación de Residuos Líquidos/métodos , Restauración y Remediación Ambiental/métodos , Suelo/química , Catálisis
3.
J Environ Sci (China) ; 150: 503-514, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306424

RESUMEN

Catalytic oxidation of NO at room temperature was carried out over nitrogen (N)-doped sludge char (SC) prepared from pyrolysis of municipal sewage sludge, and urea was adopted as nitrogen source. The effects of different N-doping methods (one-step and two-step method), dried sludge (DS)/urea mass ratios (5:1, 4:1, 3:1, 2:1, and 1:1), SC preparation procedures (pyrolysis only, pyrolysis with acid washing, and pyrolysis with KOH activation and acid washing), and different pyrolysis temperatures (500, 600, 700, and 800°C) on the catalytic oxidation of NO were compared to optimize the procedure for SC preparation. The results indicated that N-doping could obviously promote the catalytic performance of SC. The one-step method with simultaneous sludge pyrolysis (at 700°C), KOH activation, and N-doping (DS/urea of 3:1) was the optimal procedure for preparing the N-doped SC with the NO conversion rate of 54.7%, whereas the optimal NO conversion rate of SC without N-doping was only 47.3%. Urea worked both as carbon and nitrogen source, which could increase about 2.9%-16.5% of carbon and 24.8%-42.7% of nitrogen content in SC pyrolyzed at 700°C. N-doping significantly promoted microporosity of SC. The optimal N-doped SC showed specific surface areas of 571.38 m2/g, much higher than 374.34 m2/g of the optimal SC without N-doping. In addition, N-doping also increased amorphousness and surface basicity of SC through the formation of N-containing groups. Finally, three reaction paths, i.e. microporous reactor, active sites, and basic site control path, were proposed to explain the mechanism of N-doping on promoting the catalytic performance of NO.


Asunto(s)
Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Nitrógeno/química , Aguas del Alcantarillado/química , Catálisis , Temperatura , Eliminación de Residuos Líquidos/métodos , Óxido Nítrico/química , Modelos Químicos , Carbón Orgánico/química
4.
J Hazard Mater ; 480: 136014, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357364

RESUMEN

Thermochemical treatment of oily sludge (OS) has been demonstrated to be an effective approach for resource and energy recovery. However, the migration and emission of potential pollutants have limited its further development. In this study, the environmental impacts, including aromatic compounds in liquid products, N-, S-, and Cl-containing pollutants in gaseous products, and residual organic matter and heavy metals in solid residues, during the pyrolysis, gasification, and combustion processes of OS are comparatively investigated. The results indicate that the aromatics in the liquid products obtained from pyrolysis and gasification are primarily hydrocarbons with 10, 14, and 16 carbon atoms, and the corresponding degree of unsaturation is between 7 and 16. By contrast, the aromatics produced during combustion are mainly hydrocarbons with 10-12 carbon atoms and an unsaturation degree of 7. The liquid products from gasification of OS contain aromatics with more carbon atoms and a higher degree of unsaturation, suggesting potential issues of recalcitrant aromatics and tar by-products during the gasification process. The release behaviors of N-, S-, and Cl-containing pollutants during the thermochemical treatment of OS are closely related to the specific thermochemical technology and treatment temperature. At 550 °C, these pollutants are gradually released from the OS. By contrast, at 950 °C, they are released over a narrow temperature range with significantly higher concentrations. Furthermore, compared with the peak concentrations of SO2 and HCl during thermochemical processing at 550 °C, these values increase by 1-2 orders of magnitude at 950 °C. With the increase in treatment temperature, the loss on ignition (LOI) of residues from pyrolysis or gasification of OS gradually decreases and stabilizes around 0.5 %. On the other hand, the LOI from combustion fluctuates around 1.0 %. In addition, the removal rates of total organic carbon in the residues from all three thermochemical processes exceed 98.89 %. However, the potential ecological risks associated with heavy metals in the residues from thermochemical treatment of OS also increase to some extent. Cr, Cu, and Zn are found to evaporate and escape into liquid and gaseous products, while Pb is retained in the residues. Notably, the residue from combustion poses the highest environmental risks among the three processes.

5.
Bioresour Technol ; : 131562, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357609

RESUMEN

In this study, pyrolysis was performed at different times to convert Oedogonium biomass into biochar. The physicochemical properties show that the pyrolysis time significantly impacts structural and morphological changes in biochar samples. The influence of pyrolysis time on the removal of multiple heavy metals was investigated. Owing to the presence of abundant functional groups, inorganic minerals and porous nature, biochar obtained from a 40 min pyrolysis time showed higher removal efficiency of heavy metals compared to biochars pyrolyzed at 20 mins and 60 mins even with higher concentrations of metal ions. The maximum adsorption capacity was observed 9.33, 10.74, 322.58, 13.70 and 9.11 mg/g with the biochar prepared at the pyrolysis time of 40 mins for Co, Ni, Cu, Zn and Cd, respectively. The adsorption isotherm is well fitted with the Langmuir adsorption model for heavy metals adsorption, and the kinetic study is well-defined by a pseudo second-order model.

6.
ChemSusChem ; : e202401427, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268758

RESUMEN

Mo carbide is recognized as one of the most promising catalyst for CO2 utilization via reverse water-gas shift (RWGS). However, it always suffered from low processing capacity, undesired products and deactivation. Herein, an Ir modified MoO3 synthesized by the flame spray pyrolysis (FSP) method exhibits higher reaction rate (63.0 gCO2·gcat-1·h-1) compared to the one made by traditional impregnation method (45.8 gCO2·gcat-1·h-1) over the RWGS reaction at 600°C. The distinguishing feature between the two catalysts lies in the chemical state and space distribution of Ir species. Ir species predominated in the bulk phase of MoO3 during the quenching process of the FSP method and were mainly in the metallic states, which revealed by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) characterizations. In contrast, the Ir introduced via impregnation method were mainly on the surface of MoO3 and in oxidized state. The regulation of Ir dopant in MoO3 catalyst by different methods determines the carbonization process to Mo carbides, and thus affects the catalytic performance. This work sheds light on the superiority of the FSP method in synthesizing Mo oxides with heteroatoms and further creating an efficient Mo-based catalyst for CO2 conversion.

7.
Heliyon ; 10(16): e36547, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39258196

RESUMEN

Single treatment of metallised food packaging plastics waste (MFPW) has shown disappointing results with recycling rate <20 % due to its complex structure consisting of 10 % aluminium (Al) and 90 % mixed plastic films made of PE, PP, PS, PET, etc. Besides, it is generating many emissions and residues that must be landfilled making it difficult to integrate them into the circular economy. Therefore, a multi-stage recycling (MSR) approach has recently been developed using several sequential mechanical, thermal and chemical processes to recover energy and Al from MFPW with additional revenue for recycling plant operators. The thermal treatment helps to decompose the plastic fraction into wax or oil, gaseous, and solid residue (SR) composed of Al and coal, while the mechanical process can be used as a pre-treatment of MFPW feedstock and SR. Finally, the chemical treatment (leaching and functionalization) can be used to extract Al from SR and to refine coal into carbon microparticles (CPs), respectively. In order to investigate the environmental performance of the proposed MSR system, this research was developed. The investigation was performed using SimaPro life cycle analysis (LCA) tool according to ISO 14040/44 Standards and the impact assessment method is ReCiPe 2016. Five different scenarios were proposed in the constructed LCA layout, namely, conversion of MFPW to a) wax and gas (pyrolysis), b) wax, gas, and aluminium chloride (AlCl3) (pyrolysis and leaching), c) wax, gas, AlCl3, and CPs (pyrolysis, leaching, and functionalization), and d) oil, gas, AlCl3, and CPs (catalytic pyrolysis, leaching, and functionalization). Besides, the oil produced from catalytic pyrolysis is used for generation of electricity (scenario e). The results showed that wax and gas recovery scenario (a) has better environmental potential and environmental benefits compared to incineration practice. The results did not change much after extraction of Al and CPs (scenario b, c), with a few increasing by 2-4% in the total score. While a lot of environmental burdens from upgrading and utilization (Scenario d, e) were recorded, reaching 79 % due to the huge amount of the catalyst was used. Thus, MSR systems have bigger environmental benefits, however, the chemical and catalytic processes still need to be further improved to reduce the effect of terrestrial acidification.

8.
Heliyon ; 10(16): e36293, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253248

RESUMEN

To investigate the pyrolysis reaction of ryegrass, we conducted a simultaneous thermal analysis using thermogravimetric(TG) analyzers. This involved obtaining data through Thermogravimetry (TG), Derivative Thermogravimetry (DTG), and Differential thermal analysis (DTA) techniques. The experiments were conducted under dynamic nitrogen and air atmospheres at different heating rates. The kinetic parameters of ryegrass pyrolysis were determined using the Kissinger method, the Flynn-Wall-Ozawa (FWO) peak conversion rate approximate equivalence method, the Flynn-Wall-Ozawa (FWO) equal conversion rate method, and the Skvára-Sesták (S-S) method. It provides a theoretical basis for the reuse of ryegrass resources. The findings indicated that the pyrolysis temperature of ryegrass increased with the accelerated rate of temperature increase in both atmospheres. The average weight loss rate of pyrolysis of ryegrass in the air atmosphere (92.27 %) is higher than that compared to that in a nitrogen atmosphere (86.11 %). Additionally, the temperature required for complete decomposition is lower in the former case. The FWO peak conversion rate approximation equivalence approach and the FWO equal conversion rate method do not apply to the solution of the pyrolysis activation energy of ryegrass. The pyrolysis activation energy for the two decomposition stages, as calculated by the Kissinger method, is 165.73 and 185.86 kJ/mol-1 in the air atmosphere, and 219.99 and 277.02 kJ/mol-1 in a nitrogen atmosphere, respectively. The activation energy and mechanism function of ryegrass pyrolysis calculated by using the S-S method are as follows: [-ln(1-α)]2, 119.79, 104.31, 95.75, and 91.93 kJ/mol-1 in air atmosphere, (1-α)-1, 176.64, 67.89, 61.15, and 54.25 kJ/mol-1 in nitrogen atmosphere, respectively. The activation energy of ryegrass pyrolysis, as determined by both the Kissinger method and S-S method, was found to be higher under an air atmosphere compared to a nitrogen atmosphere.

9.
Waste Manag ; 190: 12-23, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260097

RESUMEN

The increasing use of carbon-fiber-reinforced plastic (CFRP) has led to its post-end-of-life recycling becoming a research focus. Herein, we studied the macroscopic and microscopic characteristics of recycled carbon fiber (rCF) during CFRP pyrolysis by innovatively combining typical experiments with machine learning. We first comprehensively studied the effects of treatment time and temperature on the mechanical properties, graphitization degree, lattice parameters, and surface O content of rCF following pyrolysis and oxidation. The surface resin residue was found to largely affect the degradation of the mechanical properties of the rCF, whereas oxidation treatment effectively removes this residue and is the critical recycling condition that determines its mechanical properties. In contrast, pyrolysis affected graphitization in a more-pronounced manner. More importantly, a random forest machine-learning model (RF model) that optimizes using a particle swarm algorithm was developed based on 336 data points and used to determine the mechanical properties and microstructural parameters of rCF when treated under various pyrolysis and oxidation conditions. The constructed model was effectively used to forecast the recovery conditions for various rCF target requirements, with the predictions for different recycling conditions found to be in good agreement with the experimental data.

10.
Waste Manag ; 190: 45-53, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265431

RESUMEN

Manure biogas residue has attracted increasing attention in waste recycling but faces substantial challenges because of its low carbon content, high ash content, and high heavy metal content. A novel sequential carbonization approach was proposed for recycling biogas residue; this approach consisted of pre-pyrolysis, activation with Ca(OH)2, and then activation with KOH. Pig manure-derived biogas residue was upcycled into engineered biochar (EB) with a high yield (26 %) and showed excellent performance in removing a typical plasticizer, diethyl phthalate (DEP). The proportion of carbon content greatly increased from 18 % (biogas residue) to 67 % (EB); however, the ash content decreased from 50 % (biogas residue) to 24 % (EB). The concentration of heavy metals decreased, and Zn had the largest decrease from 713 mg kg-1 to 61 mg kg-1 (p < 0.001). The sorption of DEP onto EB was rapid and reached equilibrium within 20 h. The developed specific surface area of EB was 1247 m2/g and provided abundant sorption sites for DEP; additionally, the sorption quantity reached 309 mg/g. The sorption capacity was dominated by surface adsorption. The oxygen-containing functional groups, graphene structure, porous structure, and hydrophobicity of EB contributed to the pore filling, hydrogen bonding, π-π stacking, and partitioning processes. Furthermore, the EB showed excellent practical application potential and great cycling stability. A sequential carbonization strategy was proposed to upcycle manure biogas residue into the EB for DEP removal; moreover, this strategy can aid in the attainment of environmental sustainability, including sustainable waste management and environmental pollution mitigation.

11.
Waste Manag ; 189: 401-409, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241558

RESUMEN

Stabilizing heavy metals (HMs) in sewage sludge is urgently needed to facilitate its recycling and reuse. Pyrolysis stands out as a promising method for not only stabilizing these metals but also producing biochar. Our research delves into the migration and transformation of specific HMs (Cr, Mn, Ni, Cu, Zn, As, and Pb) during co-pyrolysis under various conditions, including the presence and absence of microplastics (PVC and PET). We examined different concentrations of these plastics (1 %, 5 %, 10 %, and 15 %) and temperatures (300 °C, 500 °C, and 700 °C). Findings reveal that microplastics, particularly PVC, enhance the migration of Zn and Mn, leading to significant volatilization of Zn and Pb at higher temperatures, peaking at 700 °C. The increase in temperature also markedly influences HM migration, with As showcasing notable loss rates that climbed by 18.0 % and 16.3 % in systems with PET and PVC, respectively, as temperatures soared from 300 °C to 700 °C. Moreover, our speciation analysis indicates that microplastics aid in transforming certain HMs from unstable to more stable forms, suggesting their beneficial role in HM stabilization during pyrolysis. This study significantly enriches our understanding of microplastics' impact on HM behavior in sewage sludge pyrolysis, offering new avenues for pollution control and environmental management strategies.


Asunto(s)
Metales Pesados , Microplásticos , Pirólisis , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Metales Pesados/análisis , Microplásticos/análisis , Reciclaje/métodos , Cloruro de Polivinilo/química
12.
Environ Res ; 262(Pt 2): 119940, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243839

RESUMEN

Due to metal toxicity, widespread industrialization has negatively impacted crop yield and soil quality. The current study was aimed to prepare and characterize biochar made from wood shavings of Pinus roxburghii and to determine the plant growth promoting and heavy metal detoxification of cadmium (Cd) and chromium (Cr) contaminated soil. FTIR SEM coupled with EDX characterization of biochar was performed; Cd and Cr were used at a rate of 20 mg/kg. Biochar was used at the rate of 50 mg/kg for various treatments. The completely randomized design (CRD) was used for the experiment and three replicates of each treatment were made. Various agronomic and enzymatic parameters were determined. The results indicated that all growth and enzymatic parameters were enhanced by the prepared biochar treatments. The most prominent results were observed in treatment T5 (in which shoot length, root length, peroxidase dismutase (POD), superoxide dismutase (SOD) catalyzes (CAT), and chlorophyll a and b increased by 28%, 23%, 40%, 41%, 42%, and 27%, respectively, compared to the control). This study demonstrated that biochar is a sustainable and cost-effective approach for the remediation of heavy metals, and plays a role in plant growth promotion. Farmers may benefit from the current findings, as prepared biochar is easier to deliver and more affordable than chemical fertilizers. Future research could clarify how to use biochar optimally, applying the minimum amount necessary while maximizing its benefits and increasing yield.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39297740

RESUMEN

In this study, hierarchically porous ZSM-5 catalysts were fabricated by one-pot assembling ZSM-5 particles onto diverse biomass templates (e.g., rice husk, tea seed husk, tung shell, and coconut shell), wherein the biomass template was transformed into bio-SiO2 or biochar depending on the calcination conditions. The biotemplated ZSM-5 variants, including ZSM-5(RH), ZSM-5(TSH), ZSM-5(TS), and ZSM-5(CS), exhibited significantly improved deoxygenation performance, achieving ∼100.0% deoxygenation efficiency as compared to the untemplated ZSM-5 catalyst (85.3%). Among them, the ZSM-5(TSH) catalyst exhibited the best performance, accompanied by 100% conversion, 99.6% deoxygenation rate, and 82.3% olefin selectivity. Interestingly, the product distribution over biotemplated ZSM-5 was dominant C4=-C8= (selectivity of ∼100% in total olefins), while long-chain olefins (C9=-C17=) was the major product (selectivity of 57.3%) over the untemplated ZSM-5. Moreover, molecular dynamics (MD) simulations revealed that biotemplated ZSM-5 exhibited superior diffusion coefficients of stearic acid (reaction substrate) and anthracene (coke precursor) compared to the untemplated ZSM-5, indicating higher self-diffusion rates and consequently superior activity and stability in the catalytic pyrolysis reactions. Furthermore, in situ DRIFTS results showed stearic acid over ZSM-5(TSH) primarily was converted to the C17H36 intermediate mainly via the decarboxylation route, followed by dehydrogenation pyrolysis and C-C breaking reactions into C4=-C8= products. Overall, this work developed an effective strategy for manufacturing hierarchically porous zeolite catalysts using biomass-derived bio-SiO2 or biochar as the platform.

14.
J Hazard Mater ; 479: 135737, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39259991

RESUMEN

Thermal treatment is effective for the removal of perfluorooctanoic acid (PFOA). However, how temperatures, heating methods, and granular activated carbon (GAC) influence pyrolysis of PFOA, and emission risks are not fully understood. We studied thermal behaviors of PFOA at various conditions and analyzed gaseous products using real-time detection technologies and gas chromatography-mass spectrometry (GC-MS). The thermal decomposition of PFOA is surface-mediated. On the surface of quartz, PFOA decomposed into perfluoro-1-heptene and perfluoro-2-heptene, while on GAC, it tended to decompose into 1 H-perfluoroheptane (C7HF15). Neutral PFOA started evaporating around 100 â„ƒ without decomposition in ramp heating. During pyrolysis, when PFOA was pre-adsorbed onto GAC, it was mineralized into SiF4 and produced more than 45 volatile organic fluorine (VOF) byproducts, including perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs). The VOF products were longer-chain (hydro)fluorocarbons (C4-C7) at low temperatures (< 500 â„ƒ) and became shorter-chain (C1-C4) at higher temperatures (> 600 â„ƒ). PFOA transformations include decarboxylation, VOF desorption, further organofluorine decomposition and mineralization in ramp heating of PFOA-laden GAC. Decarboxylation initiates at 120 â„ƒ, but other processes require higher temperatures (>200 â„ƒ). These results offer valuable information regarding the thermal regeneration of PFAS-laden GAC and further VOF control with the afterburner or thermal oxidizer.

15.
J Hazard Mater ; 480: 135772, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305591

RESUMEN

This study focuses on the in-situ catalytic pyrolysis of the Penicillin fermentation residue (PFR), a typical antibiotic fermentation residues (AFR), using a red mud-Ca(OH)2 composite (RM-xCa) to enhance syngas production, tar conversion, and desulfurization. The invesitigation explored the effects of different preparation methods, amount of CaO addition, and final pyrolysis temperature on the performance of RM-xCa composites. The RM-xCa composite prepared by the hydrothermal method with pressure exhibited higher catalytic activity due to the formation of soluble Na through cation exchange. The amount of CaO added determined the sulfur adsorption capacity of RM-xCa, as well as the amount of H2O and CO2 involved in tar reforming and char gasification reactions. Final pyrolysis temperature significantly influenced the reduction state of Fe2O3 and decomposition of Ca(OH)2, affecting the catalytic activity and sulfur adsorption behavior of RM-xCa composites. The optimized RM-xCa composite, RM-4Ca-HT, decreased tar and H2S formationby 34 % and 38 %, respectively, at 700 °C. Additionally, RM-xCa composites can lower the oxygen and sulfur content of tar. Solid residues from PFR catalytic pyrolysis were found suitable for reused as catalysts in further tar removal process.

16.
Sci Total Environ ; 953: 176009, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39233074

RESUMEN

Quantifying trace levels of microplastics in complex environmental media remains a challenge. In this study, an approach combining field collection of samples from different depths, sample size fractionation, and plastic quantification via pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was employed to identify and quantify microplastics at two public beaches along the northeast coast of the U.S. (Salisbury beach, MA and Hampton beach, NH). A simple sampling tool was used to collect beach sand from depth intervals of 0-5 cm and 5-10 cm, respectively. The samples were sieved to give three size fractions: coarse (>1.2 mm), intermediate (100 µm-1.2 mm), and fine (1.2 µm-100 µm) particles. Following density separation and wet peroxide oxidation, a low-temperature solvent extraction protocol involving 2-chlorophenol was used to extract polyester (PET), polystyrene (PS), polyamide (PA), and polyvinyl chloride (PVC). The extract was analyzed using Py-GC-MS for the respective polymers, while the solid residue was pyrolyzed separately for polyethylene (PE) and polypropylene (PP). The one-step solvent extraction method significantly simplified the sample matrix and improved the sensitivity of analysis. Among the samples, PET was detected in greater quantities in the fine fraction than in the intermediate size fraction, and PET fine particles were located predominantly in the surface sand. Similar to PET, PS was detected at higher mass concentrations in the fine particles in most samples. These results underscore the importance of beach environment for plastic fragmentation, where a combination of factors including UV irradiation, mechanical abrasion, and water exposure promote plastic breakdown. Surface accumulation of fine plastic particles may also be attributed to transport of microplastics through wind and tides. The proposed sample treatment and analysis methods may allow sensitive and quantitative measurements of size or depth-related distribution patterns of microplastics in complex environmental media.

17.
Chemosphere ; 364: 143232, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39236914

RESUMEN

We introduce a highly efficient method for the catalytic breakdown of organic compounds using nanorods embedded within hollow nanospheres structured magnetoelectric nanocatalyst (MENC). MENCs were fabricated through a single-step process utilizing the ultrasonic spray pyrolysis technique. The dynamic electric dipole generation capability due to synergistic interaction between nanorods at the core and the hollow nanosphere shell creates a nanoscale magnetoelectric device capable of electrocatalysis-assisted water purification through advanced oxidation processes under remotely applied magnetic field excitation. Our study examines the electrocatalytic degradation of organic pollutants by MENCs under magnetic field excitation, achieving an unprecedented 90% removal efficiency for synthetic dyes. This remarkable efficiency is a result of surface redox reactions facilitated by electron and hole transfer, resulting in the production of Reactive oxygen species (ROS) such as O2•- and •OH. Additionally, antioxidant experiments were performed to confirm the ROS generation capability of MENCs under magnetic field excitation. Furthermore, trapping experiments performed employing specific scavengers for individual reactive species reveal the mechanism responsible for the magnetic field-driven catalytic breakdown of organic contaminants by MENCs. Interestingly, the MENCs exhibit >95% reduction in Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, respectively, within 90 min of exposure to a (20 mT& 1.9 kHz) AC magnetic field.


Asunto(s)
Restauración y Remediación Ambiental , Escherichia coli , Nanosferas , Nanotubos , Staphylococcus aureus , Catálisis , Nanotubos/química , Restauración y Remediación Ambiental/métodos , Nanosferas/química , Especies Reactivas de Oxígeno/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Purificación del Agua/métodos , Técnicas Electroquímicas/métodos , Colorantes/química
18.
Environ Sci Pollut Res Int ; 31(44): 56091-56113, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251537

RESUMEN

This study focused on investigating thermal degradation behaviors, kinetics, reaction mechanisms, synergistic effects, and thermodynamic parameters of wood sawdust (WSD), linear low-density polyethylene (LLDPE), and their blends (LW1:3, LW1:1, and LW3:1) during co-pyrolysis in a thermogravimetric analyzer (TGA). Thermal behavior exhibited a LW1:3 blend (25 wt.% LLDPE) showing significant mass loss at lower temperatures (150 to 300 °C) compared to the individual feedstocks, such as 150 to 400 °C and 300 to 520 °C for WSD and LLDPE, respectively. The iso-conversional methods (KAS, FWO, and FM) were used to determine the kinetic parameters (Ea and A), and the activation energy drop was highest for the LW1:3 blend. According to the master plots, the third-order reaction (O3), nucleation (P2/3), and diffusional model (D4) were the predominant reaction mechanisms for the co-pyrolysis of the LW1:3, LW1:1, and LW3:1 blend, respectively. The thermodynamic parameters demonstrate that a small amount of plastic addition into WSD can improve the reactivity of the blend, shorten the reaction time, and cause less energy-intensive reactions. The values of ΔH, ΔG, and ΔS also confirmed the co-pyrolysis process's spontaneity and endothermic nature. The Fourier transforms infrared spectrometer (FTIR) spectra of raw feedstock, blends, and their biochar revealed some of the peaks were shifted, the intensity was reduced, and disappearance can happen when the temperature was increased. Using the experimental and theoretical/predicted activation energies, the parity chart illustrates the synergistic effects of co-pyrolysis of different blends, and the LW1:3 blend has a favorable synergistic impact. These results could be helpful in process optimization and designing an effective reactor system for co-pyrolysis.


Asunto(s)
Polietileno , Pirólisis , Termodinámica , Termogravimetría , Madera , Madera/química , Cinética , Polietileno/química
19.
Angew Chem Int Ed Engl ; : e202414683, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283815

RESUMEN

Asymmetric carbon molecular sieve (CMS) hollow fiber membranes with tunable micro- and macro-structural morphologies for energy efficient propylene-propane separation are reported here.  A sub-glass transition temperature (sub-Tg) thermal oxidative crosslinking strategy enables simultaneous optimization of the intrinsic molecular sieving properties while also reducing the thickness of the CMS "skin" derived from the 6FDA:BPDA/DAM polyimide precursors. Such synergistic tuning of CMS microstructure and macroscopic morphology of CMS hollow fibers enables significantly increased propylene permeance (reaching 186.5 GPU) while maintaining an appealing propylene/propane selectivity of 13.3 for 50/50 propylene/propane mixed gas feeds. Our findings reveal a more refined and versatile tool than available with previous O2-doping pretreatments. The advanced approach here should be broadly useful to other polyimide precursors and diverse gas pairs.

20.
Sci Total Environ ; 954: 175960, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245371

RESUMEN

Diversion of the organic fraction of municipal solid waste (OFMSW) from landfills is increasing. Previous life cycle assessment studies have evaluated subsets of OFMSW management options, but conclusions are inconsistent, and none have evaluated diverse applications of material by-products. The primary objective of this work was to identify sustainability-based improvements to the selection, design, implementation, and operation of organics waste diversion management technologies. Process modeling and life cycle assessment were used to compare OFMSW composting, anaerobic digestion, and pyrolysis, with biochar used as a landfill cover, leachate treatment sorbent, and land applicant. Material and energy flows, calculated by newly developed models for the defined functional unit (1 kg MSW over a 20-year timeframe), were translated to environmental performance using ecoinvent and USLCI databases and TRACI method. Additionally, uncertainty, sensitivity, and scenario analyses were conducted to evaluate the implications of model uncertainties, design decisions, and resource recovery tradeoffs. OFMSW pyrolysis usually (65 % of uncertainty assessment simulations) had the best global warming performance mostly due to energy recovery and biochar's carbon sequestration benefit, which was independent of fate. Pyrolyzing the biosolids from OFMSW anaerobic digestion recovered the most energy and had the best performance in 34 % of uncertainty simulations. Material recovery amounts were large (e.g., more biochar was produced than required for novel uses) and warrant feasibility considerations. Global warming performance was more sensitive to uncertainty in carbon sequestration and primary energy production than in fertilizer offset, energy conversion, or heat offset approach. Practical implications include the potential for biochar supply to outweigh demand, and inconsistent revenue from the sale of recovered energy and carbon credits; future research could focus on evaluating the relative social and economic sustainability of the OFMSW management technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA