RESUMO
INTRODUCTION: Numerous genetic and biological processes have been linked to the function of microRNAs (miRNAs), which regulate gene expression by targeting messenger RNA (mRNA). It is commonly acknowledged that miRNAs play a role in the development of disease and the embryology of mammals. METHOD: To further understand its function in the oncogenic process, the expression of the miRNA profile in cancer has been investigated. Despite being referred to as a noteworthy miRNA in cancer, it is unknown whether hsa-miR-1225-5p plays a part in the in vitro progression of the luminal A and luminal B subtypes of breast cancer. We proposed that a synthetic hsa-miR-1225-5p molecule be expressed in breast cancer cell lines and its activity be evaluated with the aim of studying its function in the development of luminal breast cancer. In terms of the typical cancer progression stages, such as proliferation, survival, migration, and invasion, we investigated the role of hsa-miR-1225-5p in luminal A and B breast cancer cell lines. RESULTS: Additionally, using bioinformatics databases, we thoroughly explored the target score-based prediction of miRNA-mRNA interaction. Our study showed that the expression of miR-1225-5p significantly inhibited the in vitro growth of luminal A and B breast cancer cell lines. CONCLUSION: The results were supported by a bioinformatic analysis and a detailed gene network that boosts the activation of signaling pathways required for cancer progression.
Assuntos
Neoplasias da Mama , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Humanos , MicroRNAs/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , RNA Mensageiro/genética , Células MCF-7RESUMO
Neurodegenerative diseases (NDs) are characterized by a progressive deterioration of neuronal function, leading to motor and cognitive damage in patients. Astrocytes are essential for maintaining brain homeostasis, and their functional impairment is increasingly recognized as central to the etiology of various NDs. Such impairment can be induced by toxic insults with palmitic acid (PA), a common fatty acid, that disrupts autophagy, increases reactive oxygen species, and triggers inflammation. Although the effects of PA on astrocytes have been addressed, most aspects of the dynamics of this fatty acid remain unknown. Additionally, there is still no model that satisfactorily explains how astroglia goes from being neuroprotective to neurotoxic. Current incomplete knowledge needs to be improved by the growing field of non-coding RNAs (ncRNAs), which is proven to be related to NDs, where the complexity of the interactions among these molecules and how they control other RNA expressions need to be addressed. In the present study, we present an extensive competing endogenous RNA (ceRNA) network using transcriptomic data from normal human astrocyte (NHA) cells exposed to PA lipotoxic conditions and experimentally validated data on ncRNA interaction. The obtained network contains 7 lncRNA transcripts, 38 miRNAs, and 239 mRNAs that showed enrichment in ND-related processes, such as fatty acid metabolism and biosynthesis, FoxO and TGF-ß signaling pathways, prion diseases, apoptosis, and immune-related pathways. In addition, the transcriptomic profile was used to propose 22 potential key controllers lncRNA/miRNA/mRNA axes in ND mechanisms. The relevance of five of these axes was corroborated by the miRNA expression data obtained in other studies. MEG3 (ENST00000398461)/hsa-let-7d-5p/ATF6B axis showed importance in Parkinson's and late Alzheimer's diseases, while AC092687.3/hsa-let-7e-5p/[SREBF2, FNIP1, PMAIP1] and SDCBP2-AS1 (ENST00000446423)/hsa-miR-101-3p/MAPK6 axes are probably related to Alzheimer's disease development and pathology. The presented network and axes will help to understand the PA-induced mechanisms in astrocytes, leading to protection or injury in the CNS under lipotoxic conditions as part of the intricated cellular regulation influencing the pathology of different NDs. Furthermore, the five corroborated axes could be considered study targets for new pharmacologic treatments or as possible diagnostic molecules, contributing to improving the quality of life of millions worldwide.
RESUMO
At the interface between genes and environment, epigenetic mechanisms, including DNA methylation and histone modification, regulate neurogenic processes such as differentiation, proliferation, and maturation of neural stem cells. However, these mechanisms are altered in Alzheimer's disease (AD), a neurodegenerative condition that mainly affects older adults. Since epigenetic mechanisms are known to be reversible, a number of molecules from natural sources are being studied as epigenetic regulators in AD. Recently, in vitro and in silico studies have shown that C. subedentata and its alkaloids modulated neurotoxicity. However, studies exploring the epigenetic activity of these alkaloids are limited. We conducted a set of bioassays to evaluate neuronal differentiation and the sensitivity of undifferentiated SH-SY5 cells against a neurotoxic stimulus. In addition, we analyzed the methylation profiles in genes such as APP, PSI, and BACE1 due to their role in amyloid processing. Docking and molecular dynamic analysis were used to explore the effect exerted by C. subedentata alkaloids on the regulation of histone deacetylases (HDAC2, HDAC3 and HDAC7). The results demonstrated that C. subedentata and galantamine induce neuronal differentiation and protect the undifferentiated SH-SY5Y cells against Aß(1-42)-induced neurotoxicity. The methylation profiles of the studied genes show no statistically significant differences between C. subedentata, galantamine. However, these findings should be interpreted with caution, since small changes in methylation promoters in the brain could not be easily detected. Results from in silico approaches describe for the first time the potential promissing epigenetic effects of galantamine by regulating HDAC3 and HDAC7 modification.Communicated by Ramaswamy H. Sarma.
RESUMO
Chronic intake of a high-fat diet increases saturated fatty acids in the brain causing the progression of neurodegenerative diseases. Palmitic acid is a free fatty acid abundant in the diet that at high concentrations may penetrate the blood-brain barrier and stimulate the production of pro-inflammatory cytokines, leading to inflammation in astrocytes. The use of the synthetic neurosteroid tibolone in protection against fatty acid toxicity is emerging, but its transcriptional effects on palmitic acid-induced lipotoxicity remain unclear. Herein, we performed a transcriptome profiling of normal human astrocytes to investigate the molecular mechanisms by which palmitic acid causes cellular damage to astrocytes, and whether tibolone could reverse its detrimental effects. Astrocytes undergo a profound transcriptional change at 2 mM palmitic acid, affecting the expression of 739 genes, 366 upregulated and 373 downregulated. However, tibolone at 10 nM does not entirely reverse palmitic acid effects. Additionally, the protein-protein interaction reveals two novel gene clustering modules. The first module involves astrocyte defense responses by upregulation of pathways associated with antiviral innate immunity, and the second is linked to lipid metabolism. Our data suggest that activation of viral response signaling pathways might be so far, the initial molecular mechanism of astrocytes in response to a lipotoxic insult by palmitic acid, triggered particularly upon increased expression levels of IFIT2, IRF1, and XAF1. Therefore, this novel approach using a global gene expression analysis may shed light on the pleiotropic effects of palmitic acid on astrocytes, and provide a basis for future studies addressed to elucidate these responses in neurodegenerative conditions, which is highly valuable for the design of therapeutic strategies.
Assuntos
Interferon Tipo I , Ácido Palmítico , Humanos , Ácido Palmítico/toxicidade , Antivirais/farmacologia , Astrócitos/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Ácidos Graxos/metabolismo , Colesterol/metabolismoRESUMO
The central function of telomerase is maintaining the telomere length. However, several extra-telomeric roles have been identified for this protein complex. In this study, we evaluated the effect of the silencing of the catalytic subunit of telomerase (TERT) on the expression of candidate microRNAs, cell activation markers and glial-related genes in a glioblastoma cell line (T98G). The silencing was performed by a siRNA and the qPCR method was used to analyze the expression of TERT and downstream genes. Flow cytometry was used to quantify the TERT protein, and bioinformatics analysis was carried out to analyze the functions of microRNA target genes. Here, it was observed that after a 50% reduction of the TERT gene, the expression of ARG1 (Arginase 1) was upregulated, whereas NES (Nestin), GLUL (Glutamate-Ammonia Ligase), VIM (Vimentin) and the hsa-miR-29b-3p microRNA were downregulated (P-value <0.05). A bioinformatic analysis showed that target genes of hsa-miR-29b are associated with focal adhesion, the PI3K-Akt signaling pathway, among others. These results are important because they contribute to the knowledge of extratelomeric functions by providing relevant evidence about novel genes modulated by TERT.
Assuntos
MicroRNAs , Telomerase , Vimentina/metabolismo , Arginase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Telomerase/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem CelularRESUMO
microRNAs (miRNAs) are involved in numerous functions and processes in the brain and other organs through the regulation of gene and protein expression. miRNA dysregulation is associated with the development of several diseases, including the brain and Central Nervous System cancer (CNS). The hsa-miR-516a-5p and hsa-miR-516b-5p are involved in proliferation, migration, and invasion in different tumor models, but their antitumor effect has not been evaluated in cancer of CNS. Therefore, we aimed to assess the effect of the miRNAs hsa-miR-516a-5p and miRNA hsa-miR-516b-5p on the Glioblastoma cell line (T98G). We used synthetic miRNA mimics to induce the overexpression of both miRNAs in the cell line, which was corroborated by RT-qPCR. Next, we evaluated the effect on proliferation, migration, and invasion using the CyQuant direct kit, ThinCert ™ inserts and invasion BioCoat ™ Matrigel® Invasion Chambers. We found upregulation of these miRNAs induced significant changes on the migration and invasion processes of T98G cells, but not affected the proliferation rate. These results suggest that both microRNAs could be playing an important role in the control of tumor progression towards metastasis. The bioinformatics analysis showed that target genes for these miRNAs are involved in different biological processes such as in cell adhesion molecule binding and cell junction disassembly, which are important for cancer progression. Further studies and experimental validation are needed to identify the genes regulated by microRNAs.
Assuntos
Glioblastoma , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glioblastoma/genética , Linhagem Celular Tumoral , Regulação para Cima , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genéticaRESUMO
Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures.
RESUMO
The importance of miRNAs in cellular processes and their dysregulation has taken significant importance in understanding different pathologies. Due to the constant increase in the prevalence of neurodegenerative diseases (ND) worldwide and their economic impact, mild cognitive impairment (MCI), considered a prodromal phase, is a logical starting point to study this public health problem. Multiple studies have established the importance of miRNAs in MCI, including astrocyte regulation during stressful conditions. Additionally, the protection mechanisms exerted by astrocytes against some damage in the central nervous system (CNS) lead to astrocytic reactivation, in which a differential expression of miRNAs has been shown. Nevertheless, excessive reactivation can cause neurodegeneration, and a clear pattern defining the equilibrium point between a neuroprotective or detrimental astrocytic phenotype is unknown. Therefore, the miRNA expression has gained significant attention to understand the maintenance of brain balance and improve the diagnosis and treatment at earlier stages in the ND. Here, we provide a comprehensive review of the emerging role of miRNAs in cellular processes that contribute to the loss of cognitive function, including lipotoxicity, which can induce chronic inflammation, also considering the fundamental role of astrocytes in brain homeostasis.
RESUMO
One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
Assuntos
Ácidos Graxos , Doenças Neurodegenerativas , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/terapia , Ácido Oleico/farmacologia , Ácido Palmítico/farmacologiaRESUMO
BACKGROUND: The vitamin D receptor (VDR) is responsible for mediating the effects of vitamin D through regulation of other gene transcriptions. There are several polymorphisms that alter the gene expression or the function of this protein. We aimed to analyze the association between two SNPs of VDR gene and melanoma cancer in Colombian patients. METHODS: We included 120 healthy individual as controls and 120 melanoma cancer patients as cases . Patients in both groups were matched in terms of gender and age. The genotyping of rs731236 and rs2228570 polymorphisms was performed using PCR-RFLP. The SNPStats program was used to carry out the statistical analysis through a logistic regression model. RESULTS: Under dominant model, we found that rs2228570 polymorphism was associated with melanoma cancer risk (C/C vs C/T-T/T, OR: 5.10, 95% CI: 2.85-9.14), whereas rs731236 polymorphism was associated with a protective effect against this cancer (T/T vs T/C, OR: 0.27, 95% CI: 0.14-0.53). CONCLUSION: Our results suggested that both polymorphisms were involved in the development of melanoma cancer, increasing or decreasing this risk.
Assuntos
Etnicidade/genética , Predisposição Genética para Doença/genética , Melanoma/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Calcitriol/genética , Estudos de Casos e Controles , Colômbia/etnologia , Feminino , Predisposição Genética para Doença/etnologia , Genótipo , Humanos , Masculino , Melanoma/etnologia , Pessoa de Meia-Idade , Polimorfismo de Fragmento de RestriçãoRESUMO
Lipid peroxidation, protein oxidation, and mutations in mitochondrial DNA generate reactive oxygen species (ROS) that are involved in cell death and inflammatory response syndrome. ROS can also act as a signal in the intracellular pathways involved in normal cell growth and homeostasis, as well as in response to metabolic adaptations, autophagy, immunity, differentiation and cell aging, the latter of which is an important characteristic in acute and chronic pathologies. Thus, the measurement of ROS levels of critically ill patients, upon admission, enables a prediction not only of the severity of the inflammatory response, but also of its subsequent potential outcome. The aim of this study was to measure the levels of mitochondrial ROS (superoxide anion) in the peripheral blood lymphocytes within 24 h of admission and correlate them with survival at one year after ICU and hospital discharge. We designed an observational prospective study in 51 critical care patients, in which clinical variables and ROS production were identified and correlated with mortality at 12 months post-ICU hospitalization. Oxidative stress levels, measured as DHE fluorescence, show a positive correlation with increased long-term mortality. In ICU patients the major determinant of survival is oxidative stress, which determines inflammation and outlines the cellular response to inflammatory stimuli.
RESUMO
The primate-specific microRNA gene cluster on chromosome 19 (C19MC) is composed of 56 mature microRNAs (miRNAs), which are divided into three subgroups according to the sequence similarity. This cluster is principally expressed in the placenta but not in other tissues. C19MC is involved in the regulation of proliferation, migration, and invasion of trophoblastic cells, which are important for the development of the placenta. There is a growing number of studies that have found an altered expression of some miRNAs of the C19MC cluster in cancer, suggesting that these could play an important role in the development of this disease. Therefore, in this work, we provided an overview of the C19MC cluster's role in cancer through a systematic review of published articles. In particular, we focused on miRNAs of subgroup 3. These studies suggest that miRNAs such as miR-512-3p, miR-512-5p, miR-516a-5p, miR-516b-5p, and miR-498-5p could play a pivotal role in the development of therapies for cancer. Future studies are necessary to elucidate the molecular processes and pathways regulated by subgroup 3 miRNAs.
Assuntos
MicroRNAs , Neoplasias , Animais , Feminino , MicroRNAs/genética , Neoplasias/genética , Gravidez , TrofoblastosRESUMO
Hypoxia is a condition characterized by a reduction of cellular oxygen levels derived from alterations in oxygen balance. Hypoxic events trigger changes in cell-signaling cascades, oxidative stress, activation of pro-inflammatory molecules, and growth factors, influencing the activity of various ion channel families and leading to diverse cardiovascular diseases such as myocardial infarction, ischemic stroke, and hypertension. The large-conductance, calcium and voltage-activated potassium channel (BK) has a central role in the mechanism of oxygen (O2) sensing and its activity has been related to the hypoxic response. BK channels are ubiquitously expressed, and they are composed by the pore-forming α subunit and the regulatory subunits ß (ß1-ß4), γ (γ1-γ4), and LINGO1. The modification of biophysical properties of BK channels by ß subunits underly a myriad of physiological function of these proteins. Hypoxia induces tissue-specific modifications of BK channel α and ß subunits expression. Moreover, hypoxia modifies channel activation kinetics and voltage and/or calcium dependence. The reported effects on the BK channel properties are associated with events such as the increase of reactive oxygen species (ROS) production, increases of intracellular Calcium ([Ca2+]i), the regulation by Hypoxia-inducible factor 1α (HIF-1α), and the interaction with hemeproteins. Bronchial asthma, chronic obstructive pulmonary diseases (COPD), and obstructive sleep apnea (OSA), among others, can provoke hypoxia. Untreated OSA patients showed a decrease in BK-ß1 subunit mRNA levels and high arterial tension. Treatment with continuous positive airway pressure (CPAP) upregulated ß1 subunit mRNA level, decreased arterial pressures, and improved endothelial function coupled with a reduction in morbidity and mortality associated with OSA. These reports suggest that the BK channel has a role in the response involved in hypoxia-associated hypertension derived from OSA. Thus, this review aims to describe the mechanisms involved in the BK channel activation after a hypoxic stimulus and their relationship with disorders like OSA. A deep understanding of the molecular mechanism involved in hypoxic response may help in the therapeutic approaches to treat the pathological processes associated with diseases involving cellular hypoxia.
RESUMO
BACKGROUND: In patients admitted to the Intensive Care Unit (ICU), mortality is high due to multiple organ damage. Mitochondrial dysfunction and impaired oxygen consumption, as causative mechanisms, play a significant role in reducing the activity of immune cells in sepsis, resulting in the progression of the multiple organ dysfunction syndromes (MODS). The evaluation of mitochondrial function in critical care patients in the immune cells, especially in lymphocytes, could reveal the target point that determines mitochondrial failure. OBJECTIVE: To find the relationship between mitochondrial reactive oxygen species production (mROS), mitochondrial membrane potential (ΔΨm), and mitochondrial oxygen consumption (mVO2) in peripheral plasma lymphocytes collected from ICU patients. We also compared these three characteristic mitochondrial functions with C-reactive protein (CRP), serum lactate, and central venous saturation (SvO2) that would enable the prediction of the ultimate outcome. METHODS: Isolated lymphocytes from 54 critical care patients with SIRS by sepsis and non-sepsis etiologies were analyzed with flow cytometry by staining with dihydroethidium and JC-1, measuring mROS, ΔΨm, and mVO2. Clinical variables, such as serum lactate (mmol/L) and C-reactive protein (mg/L) from peripheral blood, were measured in the first 24 hours of admission. A confounding analysis was performed using logistic regression, and a p-value of <0.05 was considered statistically significant. RESULTS: It has been confirmed that there is a drastic increase in reactive oxygen species (ROS) and mVO2 in critically ill patients immediately after exposure to the insult pathogen-associated molecular pattern /damageassociated molecular pattern (PAMPS/DAMPS) and continued for the first 24 hours thereafter. The results showed no significant alterations in the mitochondrial membrane potential (ΔΨm) compared with the lymphocytes in controls. A significant correlation between CRP and SvO2 and a strong positive relationship between CRP, values above 3 mg/l, and white blood cells were observed. CONCLUSION: Lymphocytes from patients with SIRS displayed higher mitochondrial respiratory capacities and reactive oxygen species production compared with controls. Clinical markers of inflammation indirectly evaluate the mitochondrial function, most of which have been validated in a clinical setting.
Assuntos
Sepse , Cuidados Críticos , Estado Terminal , Humanos , Unidades de Terapia Intensiva , Mitocôndrias , PrognósticoRESUMO
The co-expression of androgen (AR) and estrogen (ER) receptors, in terms of higher AR/ER ratio, has been recently associated with poor outcome in ER-positive (ER+) breast cancer (BC) patients. The aim of this study was to analyze if the biological aggressiveness, underlined in ER+ BC tumors with higher AR/ER ratio, could be due to higher expression of genes related to cell proliferation. On a cohort of 47 ER+ BC patients, the AR/ER ratio was assessed by immunohistochemistry and by mRNA analysis. The expression level of five gene proliferation markers was defined through TaqMan®-qPCR assays. Results were validated using 979 BC cases obtained from gene expression public databases. ER+ BC tumors with ratios of AR/ER ≥ 2 have higher expression levels of cellular proliferation genes than tumors with ratios of AR/ER < 2, in both the 47 ER+ BC patients (P < 0.001) and in the validation cohort (P = 0.005). Moreover, BC cases with ratios of AR/ER ≥ 2 of the validation cohort were mainly assigned to luminal B and HER2-enriched molecular subtypes, typically characterized by higher proliferation and poorer prognosis. These data suggest that joint routine evaluation of AR and ER expression may identify a unique subset of tumors, which show higher levels of cellular proliferation and therefore a more aggressive behavior.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/genética , Proliferação de Células , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos TestesRESUMO
Ginger is a plant that is native to southern China. In the last decade and research on the components of ginger has significantly increased; of these components, 6-shogaol exhibits the greatest potential antitumor capacity. However, the molecular mechanism through which 6-shogaol exerts its effects has not yet been elucidated. In this study, the effect of 6-shogaol on tumor cells that were derived from human fibrosarcoma (HT1080) was evaluated. Cell viability was determined by a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay testing different concentrations of 6-shogaol (2.5-150 µM). Subsequently, the effect of 6-shogaol on reactive oxygen species (ROS) production, glucose uptake, and protein expression of the signaling pathway phosphatase and tensin homolog/ protein kinase B /mammalian target of rapamycin (PTEN/Akt/mTOR) was measured. 6-Shogaol reduced the viability of the tumor cells and caused an increase in ROS production, which was attenuated with the addition of N-acetylcysteine, and the recovery of cell viability was observed. The increase in ROS production in response to 6-shogaol was associated with cell death. Similarly, glucose uptake decreased with incremental concentrations of 6-shogaol, and an increase in the expression of mTOR-p and Akt-p proteins was observed; PTEN was active in all the treatments with 6-shogaol. Thus, the results suggest that cells activate uncontrolled signaling pathways, such as phosphoinositide 3-kinase (PI3K)/Akt/mTOR, among other alternative mechanisms of metabolic modulation and of survival in order to counteract the pro-oxidant effect of 6-shogaol and the decrease in glucose uptake. Interestingly, a differential response was observed when non-cancerous cells were treated with 6-shogaol.
RESUMO
Glyphosate is a broad-spectrum herbicide that is used worldwide. It represents a potential harm to surface water, and when commercially mixed with surfactants, its uptake is greatly magnified. The most well-known glyphosate-based product is Roundup. This herbicide is potentially an endocrine disruptor and many studies have shown the cytotoxicity potential of glyphosate-based herbicides. In breast cancer (BC) cell lines it has been demonstrated that glyphosate can induce cellular proliferation via estrogen receptors. Therefore, we aimed to identify gene expression changes in ER+ and ER- BC cell lines treated with Roundup and AMPA, to address changes in canonical pathways that would be related or not with the ER pathway, which we believe could interfere with cell proliferation. Using the Human Transcriptome Arrays 2.0, we identified gene expression changes in MCF-7 and MDA-MB-468 exposed to low concentrations and short exposure time to Roundup Original and AMPA. The results showed that at low concentration (0.05% Roundup) and short exposure (48h), both cell lines suffered deregulation of 11 canonical pathways, the most important being cell cycle and DNA damage repair pathways. Enrichment analysis showed similar results, except that MDA-MB-468 altered mainly metabolic processes. In contrast, 48h 10mM AMPA showed fewer differentially expressed genes, but also mainly related with metabolic processes. Our findings suggest that Roundup affects survival due to cell cycle deregulation and metabolism changes that may alter mitochondrial oxygen consumption, increase ROS levels, induce hypoxia, damage DNA repair, cause mutation accumulation and ultimately cell death. To our knowledge, this is the first study to analyze the effects of Roundup and AMPA on gene expression in triple negative BC cells. Therefore, we conclude that both compounds can cause cellular damage at low doses in a relatively short period of time in these two models, mainly affecting cell cycle and DNA repair.
Assuntos
Neoplasias da Mama/genética , Glicina/análogos & derivados , Transdução de Sinais/genética , Transcriptoma/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicina/farmacologia , Herbicidas/efeitos adversos , Herbicidas/farmacologia , Humanos , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , GlifosatoRESUMO
BACKGROUND: The high mortality rate of breast cancer is related to the occurrence of metastasis, a process that is promoted by tumor angiogenesis. MicroRNAs are small molecules of noncoding mRNA that play a key role in gene regulation and are directly involved in the progression and angiogenesis of various tumor types, including breast cancer. Several miRNAs have been described as promoters or suppressors angiogenesis and may be associated with tumor growth and metastasis. Melatonin is an oncostatic agent with a capacity of modifying the expression of innumerable genes and miRNAs related to cancer. OBJECTIVE: The aim of this study was to evaluate the role of melatonin and the tumor suppressor miR- 148a-3p on angiogenesis of breast cancer. METHOD: MDA-MB-231 cells were treated with melatonin and modified with the overexpression of miR-148a-3p. The relative quantification in real-time of miR-148a-3p, IGF-IR and VEGF was performed by real-time PCR. The protein expression of these targets was performed by immunocytochemistry and immunohistochemistry. Survival, migration and invasion rates of tumor cells were evaluated. Finally, the xenograft model of breast cancer was performed to confirm the role of melatonin in the tumor. RESULTS: The melatonin was able to increase the gene level of miR-148a-3p and decreased the gene and protein expression of IGF-1R and VEGF, both in vitro and in vivo. In addition, it also had an inhibitory effect on the survival, migration and invasion of breast tumor cells. CONCLUSION: Our results confirm the role of melatonin in the regulation of miR-148a-3p and decrease of angiogenic factors.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Melatonina/farmacologia , MicroRNAs/genética , Neovascularização Patológica/tratamento farmacológico , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Células Tumorais CultivadasRESUMO
AIMS: Breast cancer represents the second most prevalent tumor-related cause of death among women. Although studies have already been published regarding the association between breast tumors and miRNAs, this field remains unclear. MicroRNAs (miRNAs) are defined as non-coding RNA molecules, and are known to be involved in cell pathways through the regulation of gene expression. Melatonin can regulate miRNAs and genes related with angiogenesis. This hormone is produced naturally by the pineal gland and presents several antitumor effects. The aim of this study was to understand the action of melatonin in the regulation of miRNA-152-3p in vivo and in vitro. MAIN METHODS: In order to standardize the melatonin treatment in the MDA-MB-468 cells, we carried out the cell viability assay at different concentrations. PCR Array plates were used to identify the differentiated expression of miRNAs after the treatment with melatonin. The relative quantification of the target gene expression (IGF-IR, HIF-1α and VEGF) was performed by real-time PCR. For the tumor development, MDA-MB-468 cells were implanted in female BALB/c mice, and treated or not treated with melatonin. Moreover, the quantification of the target genes protein expression was performed by immunocytochemistry and immunohistochemistry. KEY FINDINGS: Relative quantification shows that the melatonin treatment increases the gene expression of miR-152-3p and the target genes, and decreased protein levels of the genes both in vitro and in vivo. SIGNIFICANCE: Our results confirm the action of melatonin on the miR-152-3p regulation known to be involved in the progression of breast cancer.