Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474251

RESUMO

Previous studies on the structural relationship between human antibodies and SARS-CoV-2 have focused on generating static snapshots of antibody complexes with the Spike trimer. However, antibody-antigen interactions are dynamic, with significant binding-induced allosteric effects on conformations of antibody and its target antigen. In this study, we employ hydrogen-deuterium exchange mass spectrometry, in vitro assays, and molecular dynamics simulations to investigate the allosteric perturbations linked to binding events between a group of human antibodies with differential functional activities, and the Spike trimer from SARS-CoV-2. Our investigations have revealed key dynamic features that define weakly or moderately neutralizing antibodies versus those with strong neutralizing activity. These results provide mechanistic insights into the functional modes of human antibodies against COVID-19, and provide a rationale for effective antiviral strategies. TeaserDifferent neutralizing antibodies induce site-specific allosteric effects across SARS-CoV-2 Spike protein

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-332544

RESUMO

The emergence of a SARS-CoV-2 variant with a point mutation in the spike (S) protein, D614G, has taken precedence over the original Wuhan isolate by May 2020. With an increased infection and transmission rate, it is imperative to determine whether antibodies induced against the D614 isolate may cross-neutralize against the G614 variant. In this report, profiling of the anti-SARS-CoV-2 humoral immunity reveals similar neutralization profiles against both S protein variants, albeit waning neutralizing antibody capacity at the later phase of infection. These findings provide further insights towards the validity of current immune-based interventions. IMPORTANCERandom mutations in the viral genome is a naturally occurring event that may lead to enhanced viral fitness and immunological resistance, while heavily impacting the validity of licensed therapeutics. A single point mutation from aspartic acid (D) to glycine (G) at position 614 of the SARS-CoV-2 spike (S) protein, termed D614G, has garnered global attention due to the observed increase in transmissibility and infection rate. Given that a majority of the developing antibody-mediated therapies and serological assays are based on the S antigen of the original Wuhan reference sequence, it is crucial to determine if humoral immunity acquired from the original SARS-CoV-2 isolate is able to induce cross-detection and cross-protection against the novel prevailing D614G variant.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-203414

RESUMO

In vitro antibody selection against pathogens from naive combinatorial libraries can yield various classes of antigen-specific binders that are distinct from those evolved from natural infection1-4. Also, rapid neutralizing antibody discovery can be made possible by a strategy that selects for those interfering with pathogen and host interaction5. Here we report the discovery of antibodies that neutralize SARS-CoV-2, the virus responsible for the COVID-19 pandemic, from a highly diverse naive human Fab library. Lead antibody 5A6 blocks the receptor binding domain (RBD) of the viral spike from binding to the host receptor angiotensin converting enzyme 2 (ACE2), neutralizes SARS-CoV-2 infection of Vero E6 cells, and reduces viral replication in reconstituted human nasal and bronchial epithelium models. 5A6 has a high occupancy on the viral surface and exerts its neutralization activity via a bivalent binding mode to the tip of two neighbouring RBDs at the ACE2 interaction interface, one in the "up" and the other in the "down" position, explaining its superior neutralization capacity. Furthermore, 5A6 is insensitive to several spike mutations identified in clinical isolates, including the D614G mutant that has become dominant worldwide. Our results suggest that 5A6 could be an effective prophylactic and therapeutic treatment of COVID-19.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-015461

RESUMO

The ongoing SARS-CoV-2 pandemic demands rapid identification of immunogenic targets for the design of efficient vaccines and serological detection tools. In this report, using pools of overlapping linear peptides and functional assays, we present two immunodominant regions on the spike glycoprotein that were highly recognized by neutralizing antibodies in the sera of COVID-19 convalescent patients. One is highly specific to SARS-CoV-2, and the other is a potential pan-coronavirus target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...