Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436243

RESUMO

Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we isolated a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the B.1.351 variant, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the B.1.351 variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes a novel strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-130161

RESUMO

SARS-CoV-2 is the etiologic agent of COVID-19, currently causing a devastating pandemic for which pharmacological interventions are urgently needed. The virus enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. The nanobody binds with high affinity in the low nM range to the RBD, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the ‘up’ and ‘down’ conformations and that Ty1 sterically hinders RBD-ACE2 binding. This 12.8 kDa nanobody does not need an Fc domain to neutralize SARS-CoV-2, and can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.Competing Interest StatementThe authors have declared no competing interest.View Full Text

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...