Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Trop Dis, v. 5, 1369608, abr. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5387

RESUMO

Introduction: Zika virus (ZIKV) infection has been associated to Guillain-Barré syndrome in adults and congenital malformations during pregnancy, leading to the manifestation of congenital Zika syndrome (CZS). The ZIKV envelope protein (EZIKV), prominently displayed on the virus surface, is a primary target for the humoral immune response. However, limited information exists regarding its capacity to induce cellular immunity, particularly in pregnant women with a history of ZIKV infection. The EZIKV protein comprises three domains: the central domain (EDI), a dimerization domain (EDII), and a domain responsible for binding to the cell surface receptor (EDIII). To examine the regions of EZIKV targeted by cellular immunity, we examined cellular immune responses in a cohort of mothers infected with ZIKV, whose infants exhibited microcephaly. Methods: To assess the ZIKV-specific response, we used inactivated virus and different recombinant viral envelope proteins (EZIKV, EDI/IIZIKV and EDIIIZIKV). All women in the study contracted the infection during pregnancy, with 72% experiencing symptoms such as fever, rash, joint pain, and retro-orbital pain. Peripheral blood mononuclear cells (PMBC) were collected post- ZIKV diagnosis confirmation, with a median time of 18 months (IQR 13.5-19) after parturition. Using the ELISpot assay, we quantified specific interferon-gamma (IFNγ) producing cells by stimulating PBMC with either inactivated ZIKV particles or equimolar amounts of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV. Results and discussion: Our findings demonstrate the induction of IFN-γ producing cells in PBMC from ZIKV-convalescent mothers, whose infants manifested microcephaly, upon stimulation with both inactivated ZIKV particles and recombinant proteins. The identification of immunodominant regions within ZIKV can contribute for the development of targeted treatments and vaccine candidates tailored for pregnant women.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263145

RESUMO

Investigations on the concordance in monozygotic (MZ) as compared to dizygotic (DZ) twins may reveal if there is a genetic component increasing the susceptibility or resistance against an infectious disease. Here, we compared the concordance rates of SARS-CoV-2 infection in MZ versus DZ young twins who shared the same bedrooms and were equally exposed to the virus. The concordance rate was higher in the MZ group supporting a complex multifactorial inheritance responsible for SARS-Cov-2 infection.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255872

RESUMO

BackgroundDespite the high number of individuals infected by SARS-CoV-2 who develop COVID-19 symptoms worldwide, many exposed individuals remain asymptomatic and/or stay uninfected. This could be explained by a combination of environmental (exposure, previous infection), epigenetic, and genetic factors. Aiming to identify genetic variants involved in SARS-CoV-2 resistance, we analyzed 86 discordant Brazilian couples where one was infected and symptomatic while the partner remained asymptomatic and seronegative despite sharing the same bedroom during the infection. The discordant partners had comparable ages, and genetic ancestry proportions. MethodsWhole-exome sequencing followed by a state-of-the-art method to call genotypes and haplotypes across the highly polymorphic MHC and LRC. ResultsWe observed a minor impact in antigen-presentation genes and KIR genes associated with resistance. Interestingly, genes related to immune modulation, mainly involved in NK cell killing activation/inhibition harbor variants potentially contributing to infection resistance. We hypothesize that individuals prone to produce higher amounts of MICA (possibly soluble), LILRB1, LILRB2, and low amounts of MICB, would be more susceptible to infection. ConclusionAccording to this hypothesis, quantitative differences in these NK activity-related molecules could contribute to resistance to COVID-19 down regulating NK cell cytotoxic activity in infected individuals but not in resistant partners.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253645

RESUMO

BackgroundClinical recurrence of COVID-19 in convalescent patients has been reported, which immune mechanisms have not been thoroughly investigated. Presence of neutralizing antibodies suggests other types of immune response are involved. MethodsWe assessed the innate type I/III IFN response, T cell responses to SARS-CoV-2 with IFN{gamma} ELISPOT, binding and neutralizing antibody assays, in two monozygotic twin pairs with one COVID-19 recurrence case. ResultsIn pair 1, four months after a first mild episode of infection for both siblings, one displayed severe clinical recurrence of COVID-19. Twin pair 2 of siblings underwent non-recurring asymptomatic infection. All fours individuals presented similar overall responses, except for remarkably difference found in specific cellular responses. Recurring sibling presented a reduced number of recognized T cell epitopes as compared to the other three including her non-recurring sibling. ConclusionsOur results suggest that an effective SARS-CoV-2-specific T cell immune response is key for complete viral control and avoidance of clinical recurrence of COVID-19. Besides, adaptive immunity can be distinct in MZ twins. Given the rising concern about SARS-CoV-2 variants that evade neutralizing antibodies elicited by vaccination or infection, our study stresses the importance of T cell responses in protection against recurrence/reinfection. Key pointsImmune parameters leading to COVID-19 recurrence/reinfection are incompletely understood. A COVID-19 recurrence case in a monozygotic twin pair is described with an intact antibody and innate type I/III Interferon response and drastically reduced number of recognized SARS-CoV-2 T cell epitopes.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253399

RESUMO

Recent SARS-CoV-2 variants pose important concerns due to their higher transmissibility (1) and escape (2) from previous infections or vaccine-induced neutralizing antibodies (nAb). The receptor binding domain (RBD) of the Spike protein is a major nAb target (3), but data on its B cell epitopes are still lacking. Using a peptide microarray, we identified an immunodominant epitope (S415-429) recognized by 68% of sera from 71 convalescent Brazilians infected with the ancestral variant. In contrast with previous studies, we have identified a linear IgG and IgA antibody binding epitope within the RBD. IgG and IgA antibody levels for this epitope positively correlated with nAb titers, suggesting a potential target of antibody neutralizing activity. Interestingly, this immunodominant RBD region harbors the mutation hotspot site K417 present in P.1 (K417T) and B.1.351 (K417N) variants. In silico simulation analyses indicate impaired RBD binding to nAb in both variants and that a glycosylation in the B.1.351 417N could further hinder antibody binding as compared to the K417T mutation in P.1. This is in line with published data showing that nAb from either convalescents or anti-CoV-2 vaccinees are less effective towards B.1.351 than for P.1. Our data support the occurrence of immune pressure and selection involving this immunodominant epitope that may have critically contributed to the recent COVID-19 marked rise in Brazil and South Africa, and pinpoint a potential additional immune escape mechanism for SARS-CoV-2.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-963546

RESUMO

The 2013-2016 West Africa EBOV epidemic was the biggest EBOV outbreak to date. An analysis of virus-specific CD8+ T-cell immunity in 30 survivors showed that 26 of those individuals had a CD8+ response to at least one EBOV protein. The dominant response (25/26 subjects) was specific to the EBOV nucleocapsid protein (NP). It has been suggested that epitopes on the EBOV NP could form an important part of an effective T-cell vaccine for Ebola Zaire. We show that a 9-amino-acid peptide NP44-52 (YQVNNLEEI) located in a conserved region of EBOV NP provides protection against morbidity and mortality after mouse adapted EBOV challenge. A single vaccination in a C57BL/6 mouse using an adjuvanted microsphere peptide vaccine formulation containing NP44-52 is enough to confer immunity in mice. Our work suggests that a peptide vaccine based on CD8+ T-cell immunity in EBOV survivors is conceptually sound and feasible. Nucleocapsid proteins within SARS-CoV-2 contain multiple class I epitopes with predicted HLA restrictions consistent with broad population coverage. A similar approach to a CTL vaccine design may be possible for that virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...