Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 190: 114819, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965266

RESUMO

Coastal and marine environments have been strongly influenced by anthropogenic activities, which may lead to high concentrations of different pollutants in sediments. Our study aimed to assess sediment contamination by polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs) and bisphenol A (BPA) in nine coastal and marine environments at Rio de Janeiro-Brazil. Physical and chemical water variables, grain-size parameters, moisture, and organic-matter content in sediments were assessed by sampling station. Multivariate analysis evidenced environmental differences between coastal lagoon and oceanic beaches, mostly influenced by marine waters. Differences among bay's beaches were mostly evidenced by sediment characteristics. PAHs and BPA were not detected in samples. For the first time, PAEs were found in sediments at Rio de Janeiro coast (South Atlantic). DEHP was detected in all coastal and marine environments, DBP was found in coastal lagoon and three marine environments. DnOP and DINP were solely found in the coastal lagoon.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Brasil , Oceanos e Mares , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-38248509

RESUMO

Microplastic contamination is a global concern due to its conspicuous presence in aquatic ecosystems and its toxic nature to environmental and human health. False mussels are among the most notable fresh- and brackish water invaders. The invasive Mytilopsis leucophaeata in Rodrigo de Freitas Lagoon-RFL (Rio de Janeiro, Brazil) is the most abundant macrofaunal invertebrate, widely established and distributed throughout the lagoon. This study aimed to assess microplastic contamination in this invasive filter feeder and evaluate its potential use as a bioindicator. Agglomerates (~100 mussels) were manually collected using a stainless-steel spatula in ten sampling areas distributed throughout the whole lagoon and kept frozen. In the laboratory, 60 individuals were sorted by area for soft-tissue digestion. Each pool of 10 soft-tissue mussels (n = 6 by area) was wet-weighted and then placed in a 150-mL decontaminated glass beaker with 50 mL of 10% KOH. Samples were heated (40 °C) for 48 h, and digested samples were filtered in glass-fiber membranes. Microplastics were found in all samples of mussels (n = 60) from RFL; the particles were mostly lower than 100 µm with a mean concentration (±SD) of 35.96 ± 47.64 MPs g wet-weight-1. Microplastics were distinguished in seven shapes with different occurrences in samples (%): fiber (43.3%); fragment (34.3%); film (16.3%); sponge/foam (4.9%); pellet (0.57%), rope/filaments (0.17%); and undefined (0.4%). Thirteen colors of microplastics were found, but transparent (54.94%), black (10.77%), and white (9.36%) were the most common. Mytilopsis leucophaeata were useful to assess microplastic contamination in RFL and might be preferentially used in other invaded brackish systems instead of native and often threatened bivalves. Our results confirm the effective application of bivalves as an indicator of coastal microplastic pollution.


Assuntos
Bivalves , Microplásticos , Humanos , Animais , Plásticos , Ecossistema , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA