Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int ; 253: 33-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26042439

RESUMO

The smuggling of products across the border regions of many countries is a practice to be fought. Brazilian authorities are increasingly worried about the illicit trade of fuels along the frontiers of the country. In order to confirm this as a crime, the Federal Police must have a means of identifying the origin of the fuel. This work describes the development of a rapid and nondestructive methodology to classify gasoline as to its origin (Brazil, Venezuela and Peru), using infrared spectroscopy and multivariate classification. Partial Least Squares Discriminant Analysis (PLS-DA) and Soft Independent Modeling Class Analogy (SIMCA) models were built. Direct standardization (DS) was employed aiming to standardize the spectra obtained in different laboratories of the border units of the Federal Police. Two approaches were considered in this work: (1) local and (2) global classification models. When using Approach 1, the PLS-DA achieved 100% correct classification, and the deviation of the predicted values for the secondary instrument considerably decreased after performing DS. In this case, SIMCA models were not efficient in the classification, even after standardization. Using a global model (Approach 2), both PLS-DA and SIMCA techniques were effective after performing DS. Considering that real situations may involve questioned samples from other nations (such as Peru), the SIMCA method developed according to Approach 2 is a more adequate, since the sample will be classified neither as Brazil nor Venezuelan. This methodology could be applied to other forensic problems involving the chemical classification of a product, provided that a specific modeling is performed.

2.
Anal Chim Acta ; 863: 9-19, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25732308

RESUMO

A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...