Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38541386

RESUMO

Thermogravimetry coupled with thermal analysis and quadrupole mass spectroscopy TGA/DTA-QMS were primarily used to assess the oxidation susceptibility of a pool of nanocrystalline powders of the semiconductor kesterite Cu2ZnSnS4 for prospective photovoltaic applications, which were prepared via the mechanochemically assisted synthesis route from two different precursor systems. Each system, as confirmed by XRD patterns, yielded first the cubic polytype of kesterite with defunct semiconductor properties, which, after thermal annealing at 500 °C under neutral gas atmosphere, was converted to the tetragonal semiconductor polytype. The TGA/DTA-QMS determinations up to 1000 °C were carried out under a neutral argon Ar atmosphere and under a dry, oxygen-containing gas mixture of O2:Ar = 1:4 (vol.). The mass spectroscopy data confirmed that under each of the gas atmospheres, a distinctly different, multistep evolution of such oxygen-bearing gaseous compounds as sulfur oxides SO2/SO3, carbon dioxide CO2, and water vapor H2O was taking place. The TGA/DTA changes in correlation with the nature of evolving gases helped in the elucidation of the plausible chemistry linked to kesterite oxidation, both in the stage of nanopowder synthesis/storage at ambient air conditions and during forced oxidation up to 1000 °C in the dry, oxygen-containing gas mixture.

2.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834571

RESUMO

We explore the important aspects of adventitious oxygen presence in nanopowders, as well as in the high-pressure and high-temperature-sintered nanoceramics of semiconductor kesterite Cu2ZnSnS4. The initial nanopowders were prepared via the mechanochemical synthesis route from two precursor systems, i.e., (i) a mixture of the constituent elements (Cu, Zn, Sn, and S), (ii) a mixture of the respective metal sulfides (Cu2S, ZnS, and SnS), and sulfur (S). They were made in each system in the form of both the raw powder of non-semiconducting cubic zincblende-type prekesterite and, after thermal treatment at 500 °C, of semiconductor tetragonal kesterite. Upon characterization, the nanopowders were subjected to high-pressure (7.7 GPa) and high-temperature (500 °C) sintering that afforded mechanically stable black pellets. Both the nanopowders and pellets were extensively characterized, employing such determinations as powder XRD, UV-Vis/FT-IR/Raman spectroscopies, solid-state 65Cu/119Sn NMR, TGA/DTA/MS, directly analyzed oxygen (O) and hydrogen (H) contents, BET specific surface area, helium density, and Vicker's hardness (when applicable). The major findings are the unexpectedly high oxygen contents in the starting nanopowders, which are further revealed in the sintered pellets as crystalline SnO2. Additionally, the pressure-temperature-time conditions of the HP-HT sintering of the nanopowders are shown (in the relevant cases) to result in the conversion of the tetragonal kesterite into cubic zincblende polytype upon decompression.


Assuntos
Semicondutores , Temperatura , Pós , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Materials (Basel) ; 15(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329651

RESUMO

A study is presented on the synthesis of reaction-mixed nitride nanopowders in the reference system of aluminium nitride AlN, gallium nitride GaN, and titanium nitride TiN (Al:Ga:Ti = 1:1:1) followed by their high-pressure and high-temperature sintering towards novel multi-nitride composite nanoceramics. The synthesis starts with a 4 h reflux in hexane of the mixture of the respective metal dimethylamides, which is followed by hexane evacuation, and reactions of the residue in liquid ammonia at -33 °C to afford a mixed metal amide/imide precursor. Plausible equilibration towards a bimetallic Al/Ga-dimethylamide compound upon mixing of the solutions of the individual metal-dimethylamide precursors containing dimeric {Al[N(CH3)2]3}2 and dimeric {Ga[N(CH3)2]3}2 is confirmed by 1H- and 13C{H}-NMR spectroscopy in C6D6 solution. The precursor is pyrolyzed under ammonia at 800 and 950 °C yielding, respectively, two different reaction-mixed composite nitride nanopowders. The latter are subjected to no-additive high-pressure and high-temperature sintering under conditions either conservative for the initial powder nanocrystallinity (650 °C, 7.7 GPa) or promoting crystal growth/recrystallization and, possibly, solid solution formation via reactions of AlN and GaN towards Al0.5Ga0.5N (1000 and 1100 °C, 7.7 GPa). The sintered composite pellets show moderately high mechanical hardness as determined by the Vicker's method. The starting nanopowders and resulting nanoceramics are characterized by powder XRD, Raman spectroscopy, and SEM/EDX. It is demonstrated that, in addition to the multi-nitride composite nanoceramics of hexagonal AlN/hexagonal GaN/cubic TiN, under specific conditions the novel composite nanoceramics made of hexagonal Al0.5Ga0.5N and cubic TiN can be prepared.

4.
Materials (Basel) ; 14(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300712

RESUMO

Presented is a study on the preparation, via original precursor solution chemistry, of intimately mixed composite nanocrystalline powders in the system gallium nitride GaN-titanium nitride TiN, atomic ratio Ga/Ti = 1/1, which were subjected to high-pressure (7.7 GPa) and high-temperature (650, 1000, and 1200 °C) sintering with no additives. Potential equilibration toward bimetallic compounds upon mixing of the solutions of the metal dimethylamide precursors, dimeric {Ga[N(CH3)2]3}2 and monomeric Ti[N(CH3)2]4, was studied with 1H- and 13C{H}-NMR spectroscopy in C6D6 solution. The different nitridation temperatures of 800 and 950 °C afforded a pool of in situ synthesis-mixed composite nanopowders of hexagonal h-GaN and cubic c-TiN with varying average crystallite sizes. The applied sintering temperatures were either to prevent temperature-induced recrystallization (650 °C) or promote crystal growth (1000 and 1200 °C) of the initial powders with the high sintering pressure of 7.7 GPa having a detrimental effect on crystal growth. The powders and nanoceramics, both of the composites and of the individual nitrides, were characterized if applicable by powder XRD, SEM/EDX, Raman spectroscopy, Vicker's hardness, and helium density. No evidence was found for metastable alloying of the two crystallographically different nitrides under the applied synthesis and sintering conditions, while the nitride domain segregation on the micrometer scale was observed on sintering. The Vicker's hardness tests for many of the composite and individual nanoceramics provided values with high hardness comparable with those of the individual h-GaN and c-TiN ceramics.

5.
Materials (Basel) ; 14(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466864

RESUMO

Silicon oxynitrides (SiOxNy) have many advantageous properties for modern ceramic applications that justify a development of their new and efficient preparation methods. In the paper, we show the possibility of preparing amorphous SiOxNy-based materials from selected liquid organosilicon compounds, methyltrimethoxysilane CH3Si(OCH3)3 and methyltriethoxysilane CH3Si(OC2H5)3, by a convenient spray pyrolysis method. The precursor mist is transported with an inert gas or a mixture of reactive gases through a preheated tube reactor to undergo complex decomposition changes, and the resulting powders are collected in the exhaust filter. The powders are produced at the tube at temperatures of 1200, 1400, and 1600 °C under various gas atmosphere conditions. In the first option, argon Ar gas is used for mist transportation and ammonia NH3 gas serves as a reactive medium, while in the second option nitrogen N2 is exclusively applied. Powder X-Ray Diffraction (XRD) results confirm the highly amorphous nature of all products except those made at 1600 °C in nitrogen. SEM examination shows the spheroidal particle morphology of powders, which is typical for this method. Fourier Transform Infrared (FT-IR) spectroscopy reveals the presence of Si-N and Si-O bonds in the powders prepared under Ar/NH3, whereas those produced under N2 additionally contain Si-C bonds. Raman spectroscopy measurements also support some turbostratic free carbon C in the products prepared under nitrogen. The directly determined O- and N-contents provide additional data linking the process conditions with specific powder composition, especially from the point of view of oxygen replacement in the Si-O moieties formed upon initial precursor decomposition reactions by nitrogen (from NH3 or N2) or carbon (from the carbonization of the organic groups).

6.
Materials (Basel) ; 14(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513821

RESUMO

Presented is a study on the original preparation of individual and in situ intimately mixed composite nanocrystalline powders in the titanium nitride-aluminum nitride system, Ti:Al = 1:1 (at.), which were used in high pressure (7.7 GPa) and high temperature (650 and 1200 °C) sintering with no binding additives for diverse individual and composite nanoceramics. First, variations in precursor processing pathways and final nitridation temperatures, 800 and 1100 °C, afforded a pool of mixed in the nanosized regime cubic TiN (c-TiN) and hexagonal AlN (h-AlN) composite nanopowders both with varying average crystallite sizes. Second, the sintering temperatures were selected either to preserve initial powder nanocrystallinity (650 °C was lower than both nitridation temperatures) or promote crystal growth and recrystallization (1200 °C was higher than both nitridation temperatures). Potential equilibration towards bimetallic compounds upon solution mixing of the organometallic precursors to nanopowders, monomeric Ti[N(CH3)2]4 and dimeric {Al[N(CH3)2]3}2, was studied with 1H and 13C NMR in C6D6 solution. The powders and nanoceramics, both of the composites and individual nitrides, were characterized if applicable by powder XRD, FT-IR, SEM/EDX, Vicker's hardness, and helium density. The Vicker's hardness tests confirmed many of the composite and individual nanoceramics having high hardnesses comparable with those of the reference h-AlN and c-TiN ceramics. This is despite extended phase segregation and, frequently, closed microsized pore formation linked mainly to the AlN component. No evidence was found for metastable alloying of the two crystallographically different nitrides under the applied synthesis and sintering conditions. The high pressure and high temperature sintering of the individual and in situ synthesis-mixed composite nanopowders of TiN-AlN was demonstrated to yield robust nanoceramics.

7.
Materials (Basel) ; 13(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784643

RESUMO

High energy ball milling is used to make first the quaternary sulfide Cu2ZnSnS4 raw nanopowders from two different precursor systems. The mechanochemical reactions in this step afford cubic pre-kesterite with defunct semiconducting properties and showing no solid-state 65Cu and 119Sn MAS NMR spectra. In the second step, each of the milled raw materials is annealed at 500 and 550 °C under argon to result in tetragonal kesterite nanopowders with the anticipated UV-Vis-determined energy band gap and qualitatively correct NMR characteristics. The magnetic properties of all materials are measured with SQUID magnetometer and confirm the pre-kesterite samples to show typical paramagnetism with a weak ferromagnetic component whereas all the kesterite samples to exhibit only paramagnetism of relatively decreased magnitude. Upon conditioning in ambient air for 3 months, a pronounced increase of paramagnetism is observed in all materials. Correlations between the magnetic and spectroscopic properties of the nanopowders including impact of oxidation are discussed. The magnetic measurements coupled with NMR spectroscopy appear to be indispensable for comprehensive kesterite evaluation.

8.
J Nanosci Nanotechnol ; 8(2): 907-13, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18464426

RESUMO

Herein, we present a part of a study on the preparation of SiC-based composite nanopowders by the two-stage Aerosol-Assisted Vapor Phase Synthesis (AAVS) method from organosilicon precursors (neat hexamethyldisiloxane, neat tetramethoxysilane, ethanol solutions of polydimethylsiloxane). Upon generation, liquid aerosol droplets were transported in a stream of argon through a ceramic reactor tube maintained at 1200 degrees C. The resulting solid by-products were collected on a nylon filter as bulk powders. Each raw powder was, subsequently, pyrolyzed in a furnace reactor heated to 1650 degrees C under a flow of argon. After the final pyrolysis at 1650 degrees C, mostly nanocrystalline silicon carbide powder with small quantities of free excess carbon was obtained from the neat hexamethyldisiloxane system, composite powder of not fully converted silica and SiC was prepared from the neat tetramethoxysilane system, and C-rich/SiC composite was made from the ethanol/polydimethylsiloxane solution system. The prevailing phase of the SiC component was the regular beta-SiC polytype. Most of the powders were composed of spheroidal particles--morphology imprinted during aerosol generation at 1200 degrees C and not much affected by the second-stage bulk pyrolysis at 1650 degrees C. The specifics of spheroidal morphology were characteristic of the applied precursor system.

9.
Inorg Chem ; 37(14): 3561-3566, 1998 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-11670444

RESUMO

Dehydrosilylation reactions in diethyl ether between H(3)Al.NMe(3) and E(SiMe(3))(3) afforded for E = P a high yield of the trimer [H(2)AlP(SiMe(3))(2)](3) (1), while for E = As a monomeric base-stabilized adduct [H(2)AlAs(SiMe(3))(2)].NMe(3) (2) as well as its degradation solid product were obtained. No reaction occurred for E = N. The single-crystal X-ray structure determination for 1 yielded a planar six-membered ring of alternating four-coordinated Al and P centers. The structural solution for 2 revealed the monomeric unit [H(2)AlAs(SiMe(3))(2)] stabilized by coordination of NMe(3) at the Al site. Pyrolysis of 1 at 450 degrees C promoted further dehydrosilylation and yielded a product which by XRD spectroscopy showed the onset of AlP crystallinity while at 950 degrees C afforded nanocrystalline AlP with 5 nm average particle size. Pyrolysis of 2 at 450 degrees C resulted in the formation of nanocrystalline AlAs with 2 nm average particle size. Under applied pyrolysis conditions for 1 and 2, the target elimination-condensation pathway via dehydrosilylation was accompanied by other decomposition side reactions and retention of some contaminant residues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA