Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 261-268, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38413234

RESUMO

Recent studies have shown that the formation of the primary cilium is associated with a specific cellular organelle known as the midbody remnant (MBR), which is a point-like organelle formed by shedding of the midbody at the end of mitosis. MBRs move along the cell surface close to the center body and regulate it to form primary cilia at the top of the centriole. Primary cilia can act as an organelle to inhibit tumorigenesis, and it is lost in a variety of tumors. Studies have shown that the accumulation of MBRs in tumor cells affects ciliogenesis; in addition, both MBRs and primary cilia are degraded in tumor cells through the autophagy pathway, and MBRs can also transfer tumor signaling pathway factors to primary cilia affecting tumorigenesis. In this article, the basic structure and the formation process of MBR and primary cilia are reviewed and the mechanism of MBRs regulating ciliogenesis is elaborated. The significance of MBR-mediated ciliogenesis in tumorigenesis and its potential as a target for cancer treatment are discussed.


Assuntos
Cílios , Neoplasias , Cílios/fisiologia , Cílios/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Autofagia/fisiologia , Carcinogênese , Centríolos/metabolismo , Centríolos/fisiologia , Transdução de Sinais , Organelas/metabolismo , Mitose , Animais
2.
DNA Cell Biol ; 43(3): 141-151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215233

RESUMO

Primary cilia are microtubule-based organelles that mediate various biological processes. Pancreatic cells are typically ciliated; however, the role of primary cilia in acute pancreatitis (AP) is largely unknown. Here, we report that the loss of primary cilia, mediated by SHCBP1 (SHC1 binding protein), exerted a provocative effect on AP. Primary cilia are extensively lost in inflamed pancreatic cells in vitro and in mouse tissues with AP in vivo. Abrogation of primary cilia aggravated lipopolysaccharide (LPS)-induced inflammation in pancreatic cells. Mechanistically, AP induced the overexpression of SHCBP1 mitotic factor, which is localized to the base of primary cilia. SHCBP1 deficiency relieved LPS- and cerulein-induced pancreatitis by preventing the loss of primary cilia in vitro and in vivo. Collectively, we reveal that inflammation-induced loss of primary cilia aggravates AP. Furthermore, abrogating SHCBP1 to prevent primary cilia loss is an efficient strategy to combat AP.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/prevenção & controle , Lipopolissacarídeos/toxicidade , Doença Aguda , Cílios/metabolismo , Inflamação
3.
Mol Carcinog ; 63(4): 601-616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169303

RESUMO

The crucial role of cancer-associated fibroblasts (CAFs) in promoting T-cell exclusion has a significant impact on tumor immune evasion and resistance to immunotherapy. Therefore, enhancing T-cell infiltration into solid tumors has emerged as a pivotal area of research. We achieved a conventional knockout of Shcbp1 (Shcbp1-/- ) through CRISPR/Cas9 gene editing and crossed these mice with spontaneous breast cancer MMTV-PyMT mice, resulting in PyMT Shcbp1-/- mice. The different CAF subtypes were detected by flow cytometry analysis (FCA). We evaluated collagen and CAFs levels using Sirius red staining, immunohistochemistry (IHC), and immunofluorescence (IF). Primary tumor cells and CAFs were isolated from both PyMT Shcbp1+/+ and PyMT Shcbp1-/- mice. We analyzed CAFs' proliferation, invasion, migration, apoptosis, and cell cycle. Transwell coculture experiments were performed with primary tumor cells and CAFs to evaluate the role of CAFs in increasing the sensitivity of tumor cells to Erdafitinib. Tumors from PyMT Shcbp1+/+ and PyMT Shcbp1-/- mice were orthotopically transplanted to assess the therapeutic effect of the Erdafitinib and PD-1 combination. CAFs and T-cell infiltration in these tumors were assessed using FCA and IF. Knockout of Shcbp1 leads to a significant reduction in tumor burden, promotes longer survival, and decreases CAFs in MMTV-PyMT. Moreover, knockout of Shcbp1 enhances the sensitivity of Erdafitinib, leading to effective inhibition of CAFs' proliferation and invasion, as well as the induction of apoptosis. Additionally, it results in cell cycle arrest at the G2/M phase in vitro. Meanwhile, Shcbp1-/- CAFs change the sensitivity of Shcbp1-/- tumor cells to Erdafitinib compared to Shcbp1+/+ CAFs. Importantly, knockout of Shcbp1 boosts the effectiveness of Erdafitinib in combination with immune checkpoint blockade therapy by augmenting T-cell infiltration through CAFs regulation in vivo. Our findings demonstrate that knockout of Shcbp1 holds significant potential in enhancing the therapeutic response of Erdafitinib combined with PD-1 antibody treatment, offering promising prospects for future breast cancer therapies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Animais , Camundongos , Fibroblastos Associados a Câncer/patologia , Receptor de Morte Celular Programada 1/metabolismo , Camundongos Knockout , Neoplasias/metabolismo , Imunoterapia , Fibroblastos/metabolismo , Microambiente Tumoral/genética , Linhagem Celular Tumoral
4.
Cancer Sci ; 115(3): 820-835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151993

RESUMO

Pancreatic cancer (PC) is a highly aggressive and deadly malignancy with limited treatment options and poor prognosis. Identifying new therapeutic targets and developing effective strategies for PC treatment is of utmost importance. Here, we revealed that SHCBP1 is significantly overexpressed in PC and negatively correlated with patient prognosis. Knockout of SHCBP1 inhibits the proliferation and migration of PC cells in vitro, and suppresses the tumor growth in vivo. In addition, we identified AZD5582 as a novel inhibitor of SHCBP1, which efficiently restrains the growth of PC in cell lines, organoids, and patient-derived xenografts. Mechanistically, we found that AZD5582 induced the apoptosis of PC cells by inhibiting the activity of PI3K/AKT signaling and preventing the degradation of TP53. Collectively, our study highlights SHCBP1 as a potential therapeutic target and its inhibitor AZD5582 as a viable agent for PC treatment strategies.


Assuntos
Alcinos , Oligopeptídeos , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Adaptadoras da Sinalização Shc/metabolismo
5.
MedComm (2020) ; 4(6): e420, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37929014

RESUMO

The gut microbiota and its homeostasis play a crucial role in human health. However, for some diseases related to the gut microbiota, current traditional medicines can only relieve symptoms, and it is difficult to solve the root causes or even cause side effects like disturbances in the gut microbiota. Increasing clinical studies and evidences have demonstrated that probiotics, prebiotics, and postbiotics can prevent and treat various diseases, but currently they can only be used as dietary supplements rather than medicines, which restricts the application of probiotics in the field of medicine. Here, this review analyzes the importance of gut microbiota in human health and the current problems of traditional medicines, and systematically summarizes the effectiveness and mechanisms of probiotics, prebiotics, and postbiotics in maintaining health and treating diseases based on animal models and clinical trials. And based on current research outcomes and development trends in this field, the challenges and prospects of their clinical application in maintaining health, alleviating and treating diseases are analyzed. It is hoped to promote the application of probiotics, prebiotics, and postbiotics in disease treatment and open up new frontiers in probiotic research.

6.
Mol Cell Probes ; 72: 101931, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683830

RESUMO

Although there are several treatments available for gastric cancer (GC), the prognosis of the disease is still poor due to many factors, such as late diagnosis and tumor heterogeneity. To identify potential therapeutic targets, bioinformatics techniques and clinical sample validation were employed and prostate transmembrane protein androgen induced 1 (PMEPA1) was selected for further study. In the present study, we found that elevated PMEPA1 expression correlates with a worse prognosis and weaker anti-tumor immunity in GC patients. Moreover, our study showed that PMEPA1 not only influences cell proliferation, clone formation, invasion, and migration in vitro, but also plays an important role in GC progression in vivo. Mechanically, PMEPA1 exerts its oncogenic effects through activating the Wnt/ß-catenin signaling pathway. Therefore, PMEPA1 is a potential target for treating GC effectively.


Assuntos
Neoplasias Gástricas , Masculino , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Via de Sinalização Wnt , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
7.
Cancer Res ; 83(22): 3767-3782, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37646571

RESUMO

The chemotherapeutic agent 5-fluorouracil (5-FU) remains the backbone of postoperative adjuvant treatment for gastric cancer. However, fewer than half of patients with gastric cancer benefit from 5-FU-based chemotherapies owing to chemoresistance and limited clinical biomarkers. Here, we identified the SNF2 protein Polo-like kinase 1-interacting checkpoint helicase (PICH) as a predictor of 5-FU chemosensitivity and characterized a transcriptional function of PICH distinct from its role in chromosome separation. PICH formed a transcriptional complex with RNA polymerase II (Pol II) and ATF4 at the CCNA1 promoter in an ATPase-dependent manner. Binding of the PICH complex promoted cyclin A1 transcription and accelerated S-phase progression. Overexpressed PICH impaired 5-FU chemosensitivity in human organoids and patient-derived xenografts. Furthermore, elevated PICH expression was negatively correlated with survival in postoperative patients receiving 5-FU chemotherapy. Together, these findings reveal an ATPase-dependent transcriptional function of PICH that promotes cyclin A1 transcription to drive 5-FU chemoresistance, providing a potential predictive biomarker of 5-FU chemosensitivity for postoperative patients with gastric cancer and prompting further investigation into the transcriptional activity of PICH. SIGNIFICANCE: PICH binds Pol II and ATF4 in an ATPase-dependent manner to form a transcriptional complex that promotes cyclin A1 expression, accelerates S-phase progression, and impairs 5-FU chemosensitivity in gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Ciclina A1 , DNA Helicases/metabolismo , Fluoruracila/farmacologia , Adenosina Trifosfatases/uso terapêutico , Quinase 1 Polo-Like
8.
Mol Cell Probes ; 69: 101915, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121410

RESUMO

Gastric cancer is one of the most common lethal malignancies in the world, especially in China. Due to the ineffective screening of early gastric cancer and drug resistance of the advanced, the prognosis of gastric cancer remains dismal. Based on bioinformatics and tissue microarray analyses, FBXO5 was selected for analysis in this study. Here, we report the function of FBXO5 in gastric cancer, showing for the first time that it contributes to tumor cell proliferation, clone formation, invasion and migration. In these preliminary findings, FBXO5 promoted the transition of the cell cycle from the G0/G1 to the G2/M phase, which likely resulted from FBXO5 interacting with CDK1 and NCAPG proteins. The relevant mechanism needs to be explored. In addition, FBXO5 participated in the tumor microenvironment and was negatively related to immune activation. FBXO5, an oncogene, plays a role in tumor initiation and progression, and is expected to be a potential target for gastric cancer treatment.


Assuntos
Proteínas F-Box , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ciclo Celular , China , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo
10.
Gastroenterology ; 164(7): 1232-1247, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36842710

RESUMO

BACKGROUND & AIMS: Although small patient subsets benefit from current targeted strategies or immunotherapy, gemcitabine remains the first-line drug for pancreatic cancer (PC) treatment. However, gemcitabine resistance is widespread and compromises long-term survival. Here, we identified ubiquitin-conjugating enzyme E2T (UBE2T) as a potential therapeutic target to combat gemcitabine resistance in PC. METHODS: Proteomics and metabolomics were combined to examine the effect of UBE2T on pyrimidine metabolism remodeling. Spontaneous PC mice (LSL-KrasG12D/+, LSL-Trp53R172H/+, Pdx1-Cre; KPC) with Ube2t-conditional knockout, organoids, and large-scale clinical samples were used to determine the effect of UBE2T on gemcitabine efficacy. Organoids, patient-derived xenografts (PDX), and KPC mice were used to examine the efficacy of the combination of a UBE2T inhibitor and gemcitabine. RESULTS: Spontaneous PC mice with Ube2t deletion had a marked survival advantage after gemcitabine treatment, and UBE2T levels were positively correlated with gemcitabine resistance in clinical patients. Mechanistically, UBE2T catalyzes ring finger protein 1 (RING1)-mediated ubiquitination of p53 and relieves the transcriptional repression of ribonucleotide reductase subunits M1 and M2, resulting in unrestrained pyrimidine biosynthesis and alleviation of replication stress. Additionally, high-throughput compound library screening using organoids identified pentagalloylglucose (PGG) as a potent UBE2T inhibitor and gemcitabine sensitizer. The combination of gemcitabine and PGG diminished tumor growth in PDX models and prolonged long-term survival in spontaneous PC mice. CONCLUSIONS: Collectively, UBE2T-mediated p53 degradation confers PC gemcitabine resistance by promoting pyrimidine biosynthesis and alleviating replication stress. This study offers an opportunity to improve PC survival by targeting UBE2T and develop a promising gemcitabine sensitizer in clinical translation setting.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral , Neoplasias Pancreáticas
11.
Curr Cancer Drug Targets ; 23(4): 293-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35713129

RESUMO

BACKGROUND: Novel therapeutic strategies are urgently required to improve clinical outcomes of gastric cancer (GC). KIF15 cooperates with KIF11 to promote bipolar spindle assembly and formation, which is essential for proper sister chromatid segregation. Therefore, we speculated that the combined inhibition of KIF11 and KIF15 might be an effective strategy for GC treatment. Hence, to test this hypothesis, we aimed to evaluate the combined therapeutic effect of KIF15 inhibitor KIF15- IN-1 and KIF11 inhibitor ispinesib in GC. METHODS: We validated the expression of KIF11 and KIF15 in GC tissues using immunohistochemistry and immunoblotting. Next, we determined the effects of KIF11 or KIF15 knockout on the proliferation of GC cell lines. Finally, we investigated the combined effects of the KIF11 and KIF15 inhibitors both in vitro and in vivo. RESULTS: KIF11 and KIF15 were overexpressed in GC tissues than in the adjacent normal tissues. Knockout of either KIF11 or KIF15 inhibited the proliferative and clonogenic abilities of GC cells. We found that the KIF15 knockout significantly increased ispinesib sensitivity in GC cells, while its overexpression showed the opposite effect. Further, using KIF15-IN-1 and ispinesib together had a synergistic effect on the antitumor proliferation of GC both in vitro and in vivo. CONCLUSION: This study shows that the combination therapy of inhibiting KIF11 and KIF15 might be an effective therapeutic strategy against gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Cinesinas/genética , Cinesinas/metabolismo , Benzamidas/farmacologia , Quinazolinas , Linhagem Celular Tumoral
12.
Curr Cancer Drug Targets ; 23(1): 2-14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35946101

RESUMO

Since their discovery, saikosaponins (SSs) have been found to play an important role in treating a variety of cancers via diverse mechanisms of action. This review summarizes the current research status and prospects of the anti-cancer activities of SSs, providing novel insights into the limitations of current studies. In addition, it discusses whether SSs can be applied in immunotherapy and the possible mechanisms by which SSs may facilitate immunotherapy. The research is significant to understanding the anti-cancer potents of SSs in the development of SSs-based therapeutic strategies and clinical practice.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias , Ácido Oleanólico , Saponinas , Humanos , Saponinas/farmacologia , Saponinas/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Neoplasias/tratamento farmacológico
13.
Sci Adv ; 8(21): eabn3774, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613265

RESUMO

The diffuse-type gastric cancer (DGC) is a subtype of gastric cancer (GC) associated with low HER2 positivity rate and insensitivity to chemotherapy and immune checkpoint inhibitors. Here, we identify urokinase-type plasminogen activator receptor (uPAR) as a potential therapeutic target for DGC. We have developed a novel anti-uPAR monoclonal antibody, which targets the domains II and III of uPAR and blocks the binding of urokinase-type plasminogen activator to uPAR. We show that the combination of anti-uPAR and anti-Programmed cell death protein 1 (PD-1) remarkably inhibits tumor growth and prolongs survival via multiple mechanisms, using cell line-derived xenograft and patient-derived xenograft mouse models. Furthermore, uPAR chimeric antigen receptor-expressing T cells based on the novel anti-uPAR effectively kill DGC patient-derived organoids and exhibit impressive survival benefit in the established mouse models, especially when combined with PD-1 blockade therapy. Our study provides a new possibility of DGC treatment by targeting uPAR in a unique manner.


Assuntos
Receptor de Morte Celular Programada 1 , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Neoplasias Gástricas , Animais , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Humanos , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
14.
Bioengineered ; 13(4): 11026-11041, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35475392

RESUMO

Long noncoding RNAs (lncRNAs) refers to a class of RNAs that have at least 200 nucleotides and do not encode proteins, and the relationship between lncRNA and cancer has recently attracted considerable research attention. The lncRNA FGD5-AS1 is a newly discovered lncRNA with a length of 3772 nucleotides. Studies have found that FGD5-AS1 is abnormally highly expressed in many cancer tissues and was closely related to the lymph node metastasis, tumor invasion, survival time, and recurrence rate of various cancers. Mechanistic analyses show that FGD5-AS1 can stabilize mRNA expression by sponging miRNA, which not only induces cancer cell proliferation, metastasis, invasion, and chemoresistance in vitro, but also promotes tumor growth and metastasis in vivo. In addition, FGD5-AS1 can serve as a diagnostic or prognostic marker for a variety of cancers. This review demonstrates the clinical significance of FGD5-AS1 in human cancer and its role in tumorigenesis and tumor progression.


Assuntos
MicroRNAs , RNA Longo não Codificante , Proliferação de Células/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Metástase Linfática , MicroRNAs/metabolismo , Nucleotídeos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
16.
J Chemother ; 34(8): 492-516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34873999

RESUMO

Cancer is a serious threat to human health and life. The tumor microenvironment (TME) not only plays a key role in the occurrence, development and metastasis of cancer, but also has a profound impact on treatment resistance. To improve and solve this problem, an increasing number of strategies targeting the TME have been proposed, and great progress has been made in recent years. This article reviews the characteristics and functions of the main matrix components of the TME and the mechanisms by which each component affects drug resistance. Furthermore, this article elaborates on targeting the TME as a strategy to treat acquired drug resistance, reduce tumor metastasis, recurrence, and improve efficacy.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-923118

RESUMO

@#[Abstract] Objective: To investigate the expression of tight junction protein claudin-7 (CLDN-7) in pancreatic cancer and its correlation with the clinicopathological features and prognosis of pancreatic cancer patients. Methods: Oncomine, GEPIA and GEO databases were used to comprehensively analyze the mRNA expression level of CLDN-7 in pancreatic cancer, and Kaplan-Meier Plotter database was used to analyze the relationship between the expression of CLDN-7 and the survival prognosis of pancreatic cancer patients. Immunohistochemical staining was used to detect the protein level of CLDN-7 in 44 cases of pancreatic cancer tissues and 31 cases of para-cancerous tissues resected in the Department of General Surgery of the Second Hospital of Lanzhou University from 2015 to 2018, and the relationship between CLDN-7 expression and clinicopathological characteristics and prognosis of patients was also analyzed. GO (Gene Ontology) analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis were conducted to analyze the possible signaling pathways that CLDN-7 may involve in and their main functions, which were further verified in TCGA and GEPIA databases. Results: Analysis of both the databases and the clinical samples showed that CLDN-7 was significantly over-expressed in pancreatic cancer tissues, and its high expression was correlated with clinical prognosis of pancreatic cancer patients; moreover, CLDN-7 expression was an independent factor affecting the overall survival time of pancreatic cancer patients (all P<0.05). GO analysis and KEGG pathway enrichment analysis confirmed that CLDN-7 was involved in DNA damage repair and glucose metabolism in pancreatic cancer patients. TCGA and GEPIA database validation showed that CLDN-7 expression in pancreatic cancer was significantly and positively correlated with the expression of DNA damage repair related genes (POLD4, SMUG1, NTHL1) and glucose metabolism related genes (ALDOA, TALDO1, PGLS) (all P<0.01). Conclusion: CLDN-7 is highly expressed in pancreatic cancer and indicates a worse clinical prognosis; moreover, CLDN-7 is associated with DNA damage repair and intratumoral glucose metabolism in pancreatic cancer.

18.
J Oncol ; 2021: 4146910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912455

RESUMO

The mechanism underlying the poor prognosis of gastric cancer, including its high degree of malignancy, invasion, and metastasis, is extremely complicated. Rho GTPases are involved in the occurrence and development of a variety of malignant tumors. ARHGAP11A, in the Rho GTPase activating protein family, is highly expressed in gastric cancer, but its function and mechanism have not yet been explored. In this study, the effect of ARHGAP11A on the occurrence and development of gastric cancer and the mechanism related to this effect were studied. The expression of ARHGAP11A was increased in gastric cancer cells and tissues, and high ARHGAP11A expression in tissues was related to the degree of tumor differentiation and poor prognosis. Moreover, ARHGAP11A knockout significantly inhibited cell proliferation, cell migration, and invasion in vitro and significantly inhibited the tumorigenic ability of gastric cancer cells in nude mice in vivo. Further studies revealed that ARHGAP11A promotes the malignant progression of gastric cancer cells by interacting with TPM1 to affect cell migration and invasion and the stability of actin filaments. These results suggest that ARHGAP11A plays an important role in gastric cancer and may become a useful prognostic biomarker and therapeutic target for gastric cancer patients.

19.
Neoplasma ; 68(5): 899-906, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34263650

RESUMO

As a common lethal disease, cancer is now responsible for the majority of deaths worldwide and has been the single most important barrier to increasing life expectancy in the world. The pathogenesis of cancer has been the key point of cancer therapeutics research. The primary cilium, a solitary microtubule-based organelle, is considered to be an important sensor for receiving mechanical and chemical stimulation from other cells and environments; it plays an important role in a variety of signal transduction and disease processes. More importantly, the primary cilium can also function as an elaborate structure to regulate cell proliferation because ciliogenesis regulates cell division by sequestering the centriole. Recently, many new findings have suggested that the length and incidence of the primary cilium are closely connected to carcinogenesis and responses to cancer therapy. Here, we review relevant evidences proving that the primary cilium plays a key role in the occurrence and treatment of cancer. We also summarize the primary cilium-associated signaling pathways in cancer, including Wnt signaling, Hedgehog signaling, PDGFR signaling, and Notch signaling, and anticipate that targeting proteins localized in the primary cilium may be a potential anti-cancer strategy.


Assuntos
Cílios , Neoplasias , Carcinogênese , Proteínas Hedgehog , Humanos , Via de Sinalização Wnt
20.
Nat Commun ; 12(1): 2812, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990570

RESUMO

Trastuzumab is the backbone of HER2-directed gastric cancer therapy, but poor patient response due to insufficient cell sensitivity and drug resistance remains a clinical challenge. Here, we report that HER2 is involved in cell mitotic promotion for tumorigenesis by hyperactivating a crucial HER2-SHCBP1-PLK1 axis that drives trastuzumab sensitivity and is targeted therapeutically. SHCBP1 is an Shc1-binding protein but is detached from scaffold protein Shc1 following HER2 activation. Released SHCBP1 responds to HER2 cascade by translocating into the nucleus following Ser273 phosphorylation, and then contributing to cell mitosis regulation through binding with PLK1 to promote the phosphorylation of the mitotic interactor MISP. Meanwhile, Shc1 is recruited to HER2 for MAPK or PI3K pathways activation. Also, clinical evidence shows that increased SHCBP1 prognosticates a poor response of patients to trastuzumab therapy. Theaflavine-3, 3'-digallate (TFBG) is identified as an inhibitor of the SHCBP1-PLK1 interaction, which is a potential trastuzumab sensitizing agent and, in combination with trastuzumab, is highly efficacious in suppressing HER2-positive gastric cancer growth. These findings suggest an aberrant mitotic HER2-SHCBP1-PLK1 axis underlies trastuzumab sensitivity and offer a new strategy to combat gastric cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Trastuzumab/farmacologia , Animais , Antineoplásicos Imunológicos/farmacologia , Biflavonoides/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Mitose/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Fosfoproteínas/metabolismo , Prognóstico , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Receptor ErbB-2/antagonistas & inibidores , Proteínas Adaptadoras da Sinalização Shc/antagonistas & inibidores , Proteínas Adaptadoras da Sinalização Shc/química , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...